Focal Structures and programming information types

Pablo Romero
School of Cognitive and Computing Sciences
Sussex University, U.K.
email: juanr@cogs.susx.ac.uk *

Abstract

Several studies have suggested that the mental structures of programmers of procedural
languages have a close relationship with a model of structural knowledge related to functional
information known as Programming Plans. It also has been claimed that experienced programmers
organise this representation in a hierarchical structure where some elements of plans are focal or
central to them. However, it is not clear that this is the case for other types of programming
language, especially for those which are significantly different from the procedural paradigm.

The study reported in this paper investigates whether these claims are true for Prolog, a
language which has important differences to procedural languages. Prolog does not have obvious
syntactic cues to mark blocks of code (begin/end, repeat/until, etc). Also, its powerful primitives
(unification and backtracking) and the extensive use of recursion might influence how programmers
comprehend Prolog code in a significant way.

The findings of the study suggest that Plans and functional information are important for Prolog
programmers, but that there is also at least another model of structural knowledge valid for this
language. This model of structural knowledge, Prolog Schemas, is related to data structure
information and it seems that a hierarchical organisation that highlights the relevance of some
elements as focal is still valid for Prolog. These results support the view that comprehension involves
the detection of varying aspects of the code and that each of the structures related to these aspects
might have their own organisation and hierarchical relations.

Keywords: program comprehension, focal lines, Prolog.

1 Introduction

Program comprehension is a skill that is central to programming, so having a clear picture of
comprehension as a cognitive process is a prerequisite to building models of programming tasks such as
debugging, modification, reuse, etc. Yet comprehension has been studied mainly for languages belonging
to the structured programming paradigm.

Programmers are said to be able to comprehend computer programs because of the structural and
strategic knowledge about programming that they have acquired through experience. The Programming
Plan concept has been the dominant model used to represent the structural knowledge that programmers
possess (Detienne, 1990). Programming plans are said to be strongly related to what the program does
(functional information). Tt has been suggested that this model has a close relationship to the mental
models programmers build when they perform program comprehension. Also, it has been claimed that
plans typically comprise several elements, and that through experience, programmers organise this
structural knowledge in such a way that some elements become focal or salient (Davies, 1993, 1994).

*Supported by a grant from the Mexican Council for Science and Technology, CONACYT



Goal: find an occurrence of 7x

CODE PLAN TERMS
Plan: 7?found := false initialise to not found
loop through category of 7x
if 7x then
?found := true set it to true
=7 use it

Figure 1: Plan description

From Gilmore and Green (1988)

However, these claims have yet to be tested for programming paradigms other than the structured one.
A programming language significantly different from this main trend, and therefore suitable to explore
these claims is Prolog. This programming language is in a class of its own because of its declarative
nature and its powerful primitives. Several studies have tried, without much success, to find evidence of
a relationship between the Programming Plans idea and the mental models of Prolog

programmers (Bellamy & Gilmore, 1990; Ormerod & Ball, 1993).

This paper explores the nature of Prolog programmers’ structural knowledge, adopting the model
proposed by Davies (1993, 1994), but extending the notion of focal structures to consider not only
function but also other programming information types. This investigation is performed through two
experiments, the first one applies a program recall task to find out which of several structural models are
relevant for Prolog programmers, while the second one compares the importance of two specific
structural models for this same programming language through a code recognition task.

This document 1s divided into four parts. The next section gives a brief account of program
comprehension studies, the following parts describe and discuss the two experiments and the final
section analyses the global results.

2 Program comprehension

Program comprehension is a complex cognitive process that involves the acknowledgement and
understanding of several elements. The result of this process is a more or less detailed mental model that
the programmer builds of the program she has studied. The qualities of this mental model vary
according to several factors, among them the programmer’s skill level, the size of the program and the
task in hand.

In order to understand the sources of knowledge that programmers use to build these comprehension
mental models, several structural models of this programming knowledge have been proposed. One of
the most successful of such models is the idea of Programming Plans.

These models propose specific structures that are said to be a good approximation of the internal
knowledge structures that enable programmers to organise programs in a particular way. This structural
organisation sometimes highlights a specific aspect of the code. According to Pennington (1987) code
aspects or Text Abstractions are the different kinds of information that are implicit in the program’s
text. The programming Plans model, for example, is primarily based on functional and data flow code
aspects, this is, in what the program does and the relationships between the program variables.



length([],L,L).
length([H|T],LO,L):-
p(X):- L1 is LO+1,
g(X,Y), length(T,L1,L).

Figure 3: An occurrence of the before
Figure 2: The before technique technique

From Bowles and Brna (1993) From Bowles and Brna (1993)

2.1 The comprehension process

One of the earliest theories of program comprehension was introduced by Brooks (1983), who proposed a
theoretical framework to understand behavioural differences in program comprehension. He regards
comprehension as a process of domain reconstruction. This reconstruction involves establishing
mappings from the problem domain to the program domain via some other intermediate domains. This
process of establishing mappings consists of generating and refining hypotheses about program execution
and its relation to the other domains. Hypothesis refinement is performed in a top-down fashion. This
process begins with a primary, top-level hypothesis which is decomposed into several subsidiary, more
specific hypotheses. The generation of hypotheses is performed by retrieving structural units from the
programmers knowledge. These structural knowledge units are used to generate more hypotheses or are
matched against the program’s code. As a result of this matching process, the code is organised into
meaningful chunks or units. These chunks can be considered as the external analogues of the
programmer’s structural knowledge. According to Brooks, in order to perform this organisation of the
program into meaningful chunks, programmers look for specific patterns of code which can confirm the
proposed hypothesis. These patterns of code are known as key segments of the code’s meaningful chunks.

The next section describes several models proposed to explain the nature and characteristics of the
programmers’ internal structural knowledge used in the comprehension process.

2.2 Structural models

A distinction has to be made between a structural model and the organisation of a specific program
according to the application of a structural model. A structural model is a construct that is used to
explain some aspects of the programming knowledge possessed by programmers. The organisation that
the application of this model imposes over a particular instance of code is the model instance. In the
case of Plans, the structural model would be Plan knowledge as an abstract concept and the model
instance would be the result of applying a Plan view over a specific program.

One assumption shared by several models is the idea that programmers, especially experienced
programmers, are able to organise the program they understand into meaningful chunks. One of such
models is Programming Plans (Pennington, 1987; Gilmore & Green, 1988; Davies, 1990) and the
meaningful chunks or Plans are frames that comprise stereotypical programming procedures and whose
slots can be filled with variables related to the specific problem being solved. In this way, Plans can be
seen as Data Structures that represent generic concepts stored in memory. Figure 1 gives an example of
a plan instance.

Some studies have suggested that the elements that comprise these units of meaningful information have
different degrees of relevance or saliency for programmers (Rist, 1989; Davies, 1993, 1994; Rist, 1995).



The elements that directly encode the goal of a particular Plan are said to be focal for experienced
programmers. For example, if the programming task is to accumulate data and compute an average, the
key or focal element of it will be the place where the division between the running total and the number
of items takes place (Rist, 1995). Although Plans have been related to data-flow as well as to functional
information, focal elements of Plans seem to be highly related to function only. Because of the functional
nature of the focal elements of Plans, this paper considers Plans as related mainly to function.

Wiedenbeck (1986) gives empirical evidence that supports this notion of key elements. In her study,
novices and experienced programmers tried to understand and memorise a short Pascal program. After
this study period, they were asked to recall as much as they could of the program code. The results
showed that experienced programmers, unlike novices, recalled key segments much better than other
parts of the code. According to Davies (1993, 1994), as a result of experience, programmers restructure
their programming knowledge by identifying the focal elements of plans and assigning them a high place
in the plan hierarchy. He gives empirical evidence that supports this notion of focal structures by
performing an experiment that compares the recognition of focal and non-focal lines of Pascal programs
for three groups of programmers: novices, intermediates and experienced. His results show that
experienced programmers, unlike the other groups, are able to recognise more quickly and more
accurately focal segments than non-focal segments.

However, studies of Programming Plans and focal structures have considered mainly procedural
languages. Some studies have tried, without much success, to find evidence of a relationship between
Plans and Prolog programmers’ mental models (Bellamy & Gilmore, 1990; Ormerod & Ball, 1993).

There are alternative structural models for Prolog. Brna, Bundy, Todd, Eisenstadt, Looi, and Pain
(1991) and Bowles and Brna (1993) propose that Prolog programmers’ structural knowledge is related to
‘Prolog Techniques’. This structural model is similar to Plans, but it comprises knowledge about how to
perform specific Prolog operations. An instance of a basic programming technique is given in Figure 2.
This technique’s instance is called the before technique because the value of Y is constructed in the
subgoal g and then sent to the recursive call. Figure 3 illustrates an occurrence of this instance in the
predicate length/3.

Another structural model for Prolog is ‘Prolog Schemas’. Gegg-Harrison (1991) proposes this structural
model and describes a set of common Prolog Schema instances for list processing. A specific example
from this set is given in Figure 4. In this example, << &n >> denotes any number of Prolog arguments,
and clauses surrounded by <> are optional. This example deals with the task of processing a list until
the first occurrence of an element is found. The base case ensures that E, the element that is being
searched for, is found. The second clause optionally checks that the list element being processed is not
the one which is being looked for, performs an optional process, makes a recursive call trying to find the
element in the tail of the list and calls a second optional process. This schema instance is very similar to
the example of a programming plan instance given in Figure 1.

Techniques and Schemas as structural models for Prolog were proposed for teaching purposes. Their
authors do not claim a relationship between these constructs and the Prolog programmer’s mental
model. One of the purposes of this paper is to explore whether such a relationship exists.

Also, there has not been any research about focal structures for models other than Plans. It is
interesting to investigate if the restructuring of programming knowledge that Davies refers to only
happens for functional information, or whether knowledge related to other types of information is also
restructured as a result of programming experience.



schema_C([E|T],E,<< &1 >>).

schema_C([H|T],E,<< &2 >>:-
<E\=H>,
<pre_pred(<< &3 >> H,<< &4 >>)>,
schema_C(T,E,<< &b >>),
<post_pred(<< &6 >> H,<< &7 >>)>,

Figure 4: An example of a simple Prolog schema

From Gegg-Harrison (1991)

2.3 Code aspects

A structural organisation sometimes highlights a specific aspect of the code. Code aspects refer to the
different ways in which a program can be interpreted, or in Pennington’s words, to the different kinds of
information implicit in the program text. Some of these different kinds of information can be function,
data structure, data-flow and control-flow. function refers to what the program does, data structure to
the programming language objects that are used in order to implement a solution to the programming
problem. Data-flow refers to how these objects are related in the program and control-flow to the
sequence of actions that will occur when the program is executed. According to Pennington, full
comprehension of a program involves the detection of several, complementary aspects of the code.

Programming Plans, and especially their key elements, seem to be related to functional information. It
seems clear that in the previous example about the Plan to compute an average, the place where the
running total is divided between the number of items is related to what the Plan is meant to do.

Prolog Techniques are concerned with how instantiations of Prolog objects are linked through the
program. This characteristic seems to link this model to data-flow information, while the stress on well
known data structures and the operations performed over them make Schemas related to data structure
information. The example of Prolog Schema given in Figure 4 shows a typical operation that a
procedure performs over a list, one of the most important data structures in Prolog.

The experiments described in this paper employ program recall and recognition tasks to find out which
structural model and related aspect of the code is important to Prolog programmers when adopting the
knowledge restructuring theory of program comprehension by Davies (1993, 1994), but extending it to
consider not only function but also other information types.

3 Which structural model?

The experiment described in this section was concerned with exploring the nature of the mental model
Prolog programmers through finding out which structural model of several considered is most relevant
for them. The comparisons were made taking into account the key elements of these structural models.

To measure the relevance of a specific structural model, the experiment considered a recall task similar
to the one in Wiedenbeck (1986). Subjects were asked to understand and memorise a small Prolog
program, and then recall what they could of it. This code was analysed in terms of the different models
of structural knowledge of Prolog and their associated key segments. The relative success of recollection
of the different key segments was compared against the relative success of recollection of the rest of the
program to establish the relevance of these structural knowledge models for Prolog programmers. The



main difference with Wiedenbeck’s study is that the present experiment compared several structural
models for program comprehension, while Wiedenbeck’s took into account Programming Plans only.
The structural models taken into account in this experiment are Plans, Prolog Techniques, Prolog
Schemas and Recursion Points. This last model highlights control-flow information, and is concerned
with how recursion is handled in Prolog.

Additionally, and to confirm the subjects’ level of skill, there was a function identification task in the
experiment. Besides recalling the code, the programmer subjects were asked to describe the program’s
function. The accuracy of these descriptions was compared for novice and experienced subjects to
confirm that there were differences between these two groups in terms of their program comprehension

skills.

3.1 Aims

The aim of this experiment was to find out for which model of structural knowledge there is a difference
in accuracy of recall between key and non-key segments. This finding might suggest which structural
model seems to be more relevant to Prolog programmers and therefore will provide information about
the nature and characteristics of Prolog mental models.

3.2 Design

This experiment considered one independent variable, level of programming skill (experienced, novice
and non-programmer) and nine dependent variables, the success of recollection for the key segments and
the non-key segments of four different structure models of comprehension (Plans, Prolog Techniques,
Prolog Schemas and Recursion Points) and the accuracy of function identification by the programmer
subjects.

3.3 Subjects, procedure and materials

There were 30 subjects: 10 experienced and 10 novice Prolog programmers and a group of 10
non-programmers. The group of experienced programmers had on average 8.6 years of Prolog experience
and were either university lecturers or research fellows. The group of novices had taken a three month
introductory course in Prolog and were either undergraduates or masters students. The group of
non-programmers did not know anything about computer programming. The novice population was
inexperienced in Prolog, but not in programming in general. Most of them knew three or more
programming languages apart from Prolog. Also, they often had more recent contact with Prolog than
some of the experienced programmers.

This experiment used a control group, the group of non-programmers, because the recall experimental
task might confound pure memorisation and real comprehension of the code.

The novice and experienced programmer subjects of this experiment performed three similar sessions. In
each session, they were given a hardcopy of the experimental program and were asked to study and
memorise it. This study period lasted 3 minutes. After this, the subjects were given 5 minutes to recall
and write down what they could remember of the program. Finally, these subjects used another period
of 3 minutes to write down a short explanation of what, according to them, the program did.

The control group of non-programmers followed a slightly different procedure. They were not instructed
to comprehend but only to memorise the programs. Also, they were not asked to write down an
explanation of what the programs did. In each case the order of presentation of the experimental



/* average(-,-) */

average(Average,Max):-
read_rain(RainList),
total_rain(RainList,RainAmount,NumberOfDays,Max),
Average is RainAmount / NumberOfDays.

read_rain(RainList):-
write(’enter data’),
read(Rain),

next_value(Rain,RainList).
total rain([],0,0,0).

total rain([Rain|Rest], RainAmount,NumberOfDays, Max):-
total rain(Rest, TempRainAmount, TempNumberOfDays, TempMax),
RamAmount 1s TempRainAmount + Rain,
NumberOfDays is TempNumberOfDays + 1,
max(TempMax,Rain,Max).

max(Max,Min,Max):-
Max >= Min.

max(Min,Max, Max):-
Min < Max.

next_value(99999.[]).

next_value(Rain,[Rain|Rest]):-
Rain =\= 99999,
write(’enter data’),
read(NewRain),
next_value(NewRain,Rest).

Figure 5: A version of the ‘rainfall’ program highlighting the focal structures of Schemas (in bold) and
of Plans (in italic).



programs was randomised.

There were three experimental programs. These were, a Prolog version of the ‘rainfall’ program (Davies,
1994), of the bubble sort and a program that performs a binary to decimal conversion. Figure 5 shows
the Prolog version of the ‘rainfall’ program.

These programs were analysed in terms of key segments of Plans, of Prolog Schemas and of Prolog
Techniques according to the definitions by Rist (1995), Gegg-Harrison (1991) and Bowles and Brna
(1993) respectively. In the case of Prolog Schemas, the key segments were considered as the compulsory
elements of Gegg-Harrison’s definition. The choice of key segments for the case of Prolog Techniques
was not obvious, so the experiment considered the whole occurrences of the instances of Techniques. The
programs were also analysed in terms of their Recursion Points, and the key segments this time were
considered as the lines where recursion was invoked or where it stopped. Figure 5 shows the occurrences
of the key segments for the case of Plans and Prolog Schemas in the ‘rainfall’ program.

Finally, as the experimental task included the identification of the programs’ functionality, ‘disguised’
versions of these programs were presented to the subjects. The criteria to ‘disguise’ these programs was

similar to the one used by Wiedenbeck (1986).

3.4 Results

The data of this experiment was analysed in two parts. First, the performance of the programmer
groups was compared in terms of the accuracy of the identification of the programs’ functions. In the
main part of the experimental analysis, the percentage of recollection of key and non-key segments was
compared for each one of the four structural models considered.

In the first case, the programmers’ statements were considered as correct only if they mentioned the
major functions performed by the programs. It was not surprising that the experienced programmer
group was more successful in identifying the function of the programs. Their percentage of correct
identification was 70%, while for the novices it was 23.3%. A Chi-square test showed that this difference
was significant (F(1) = 15.15, p << .01).

As mentioned earlier, this first part of the analysis was performed to confirm that there were differences
in the degree of understanding of experienced and novice programmers.

The hand written record of the subject’s recollection of the code was the raw data for the main part of
the experimental analysis. This analysis compared the percentages of recollection of the occurrences of
the different kinds of key segments versus the percentages of recollection of the program lines that did
not contain occurrences of these key segments. For example, it can be seen in Figure 5 that the lines 1 to
8, 11, 12, 13, 17, 18, 19 and 21 to 24 do not share elements with the instances of Schemas. Therefore the
analysis for Schemas compared the percentage of recollection of these lines (and similar lines in the other
programs) with the percentage of recollection of key segments of Schemas. Figures 6, 7, 8 and 9
illustrate the results of these comparisons for the four kinds of structures.

The statistical analysis for this part of the study focused on the rate of change across the subject groups
of the difference between the recollection of key segments of structures and lines outside them for each
one of the considered structures. For example, it can be seen that for the case of Schemas (Figure 6) this
difference is negative for non-programmers and for novices, and positive for experienced programmers.
So the statistical analysis for each structure considered one independent variable (level of skill), and one
dependent variable (Key-Non-key segment percentage of recollection difference). For each one of the four
comparisons, a one-way ANOVA analysis was run after verifying that its assumptions had been met.
The only case for which this rate of change among groups was significant was for Schemas (F(2,29) =

8.57, p < .05).



Kind of Segment Kind of Segment

10 Key

PERCENTAGE DF RECOLLECTION
FERCENTAGE OF RECOLLECTION

Key -
_-Non—key 0 N . Non-key
N-p Noviee FXPeg, N-peg Nigg *PeRig,,
Ro, RAMME ENce,, G iyt CEp
Figure 6: Percentage of recollection for key Figure 7: Percentage of recollection for key
segments of Schemas and lines outside them segments of Plans and lines outside them
pul)
100 é g0
é a0 E a0
5 a0 j ro
& =
- 70 el
é B0 i
o} - S
L S L .
S R = Kind of Seq
=R L b = Kind gment
E :Z -------- Kind of Segment 2 _Key
L - & Non-key
E 10 __Key on_ Noye EXpp
i Non—key PRog - E RIENCED
oN'F’Ro(; NOVICE ExpERlENCE "
Aty D
Figure 9: Percentage of recollection for key
Figure 8: Percentage of recollection for key segments of Recursion Points and lines outside
segments of Techniques and lines outside them them

This analysis only considered the interaction effects because, as it can be seen in Figures 6, 7, 8 and 9,
Non-key segments were in general recalled better than Key segments. This effect had to do with the fact
that the different kinds of key segments had different average sizes, and some of them were considerably
larger than the average line of code. While some kinds of key segments, for example, typically had short
base cases as instances, some others had instances that comprised several long lines. Another factor that
contributed to this disparity in recollection was that the location of some key segments in the code was
not balanced (some of them tended to appear at the bottom of the program).

Although a direct comparison across key segments of the different structures showed that again those of
Schemas were the most relevant for programmers, this comparison was not considered reliable because of
the disparity on size and location in the code of the different types of key segments.

3.5 Discussion

The results show that Schemas, stereotypical patterns of programming procedures related to data
structure aspects, seem to be important for Prolog program comprehension. When comparing the
difference between the percentage of recollection of key and non-key segments for each structure,
Schemas were the only case for which the difference between groups was significant. It seems that these
results show that Schemas become more important for the comprehension process as Prolog
programmers develop higher levels of skill.

Following Brooks’s hypothesis, it could be said that Schemas seem to be the key elements of structural
knowledge (about data structure) that Prolog programmers use to guide their comprehension process.



This contrasts with procedural languages, where Plans and their key elements seem to be
important (Wiedenbeck, 1986; Davies, 1994).

The finding that information related to data structures is important for the comprehension process in
Prolog is in agreement with the results of Bergantz and Hassell (1991). They found that ‘data structure
relationships play a dominant role at the beginning of the comprehension process’ (p. 323) for the case
of Prolog. Although the period they considered as the beginning of the comprehension process was
approximately three times of what the present experiment took into account (ten minutes as opposed to
three minutes) and the experimental task was different (program modification), the basic finding is quite
similar.

Tt is interesting to compare these results with those obtained by Wiedenbeck (1986) because the
experiment reported in this paper is similar to hers. She found that key segments of Plans were relevant
for the case of Pascal. Figure 7 can be used to make a closer comparison. With a graph similar to this
one, Wiedenbeck shows how this type of functional information is very important only for experienced
programmers. Her results were not replicated in the present study. It could be argued that the
experimental programs were different, but the results when considering only the bubble sort program,
which is similar to the sort program Wiedenbeck uses, are basically the same to those obtained when
taking into account all three programs. So it seems that the key difference is the programming language
considered, although taking a closer look at this language’s properties and at the experiment’s
characteristics might offer a more precise explanation for this difference in results.

Tt seems reasonable to think that in absence of any other information (neither internal nor external
documentation, and with cryptic variable and procedure names) patterns of typical operations
performed over familiar data structures can be very important to start making sense of the code. This
lack of documentation and meaningful variable names seems to be an important issue for Prolog.

Green, Bellamy, and Parker (1987) mention that Prolog, due to its poor ‘role-expressiveness’, is specially
sensitive to naming style (‘Salient variable names are almost the only method of making a Prolog
program “role-expressive” and thereby revealing the plan structures’, p. 142). An obvious question is
how naming style influences the program comprehension mental model, or in other words, which aspect
of the program (data-flow, control-flow, data structure or function) would be relevant for programmers
when meaningful variable names are considered.

Another aspect to consider has to do with a combination of the nature of the recall task and Prolog.
Recall was particularly useful for this experiment because several structural models could be explored
through the same task, however, there are some characteristics of the recall task that have to be looked
at in more detail. According to Kintsch (1970), retrieval is an important subtask in recall and material
which is easy to associate and organise is more likely to be retrieved and therefore recalled. Key
segments of Prolog Schemas are structures that have well defined internal organisation and that have a
high degree of independence from other parts of the program. This is not the case for the key segments
of other structures. For example, from Figure 5 it can be seen that the key segments of Schemas can be
understood without reference to any variable or procedure name external to them, however, this is not
the case for the key segments of Plans. To understand how RainAmount 1s computed, first the variables
TempRainAmount and Rain have to be traced, but these variables are dependent on other segments of
the code, among them a part of a Schema key segment. If some of these other segments of code cannot
be recalled correctly, it would be much harder to recall this particular Plan key segment. In a way, the
Prolog Schemas model slices Prolog programs without ‘cutting’ any link of Prolog objects associations,
creating a chunk that can be called an independent unit and that could therefore be organised, retrieved
and recalled more easily. However, this does not mean that Schemas are necessarily relevant to Prolog
programmers, or that other aspects of the code are not important to them. These other aspects of the
code might be related to segments which are highly associated, and therefore dependent in terms of
retrieval, from other parts of the program.

These considerations suggest the need for more experimentation controlling aspects like naming style

10



and modifying the experimental task. The next section describes an experiment that took into account
these considerations.

4 A comparison of two structural models

The findings of the program recall experiment suggested that Schemas’ key segments, programming
constructs related to data structure, seem to be relevant for Prolog programmers, but aspects such as
naming style and the experimental task might have played a role in this outcome.

The experiment reported in this section tried to find out whether focal structures (and therefore
programming structural knowledge) in Prolog are related to functional or data structure aspects.
Functional information was considered because there is strong empirical support, at least from the
procedural languages literature, that function is an important aspect of programming knowledge.

The finding of the previous experiment that focal structures of Schemas are important for Prolog
program comprehension could be explained by at least three causes (or a combination of them). One
possible cause is that the comprehension process normally focuses on functional information, but the use
of cryptic variable names and the ‘opacity’ of the programming language exacerbated the difficulty of
detecting functional information. Tt seems that the most relevant aspect (or perhaps the only one) that
can be detected in these circumstances is data structure. This explanation assumes that the aspect of
the code which 1s accessible to programmers determines what segments of the program are considered as
focal.

Another possible cause is that the recall, as oposed to some other task, favoured key segments of
Schemas and blurred the importance of other code aspects. It is also possible that comprehension in
Prolog is linked to data structure, and that therefore data structure information is relevant regardless of
factors like naming style and experimental task.

The first explanation would predict that data structure aspects are only important when cryptic naming
style is considered. When some other aspects, function among them, are easily available in the code,
Prolog programmers would not be different from those of procedural languages and will take functional
information as the relevant aspect of the code. The second explanation implies that the choice of a
relevant aspect would change when considering another experimental task. In this case, assuming again
that Prolog is not that different from procedural languages, a likely outcome is that function is the
relevant aspect regardless of experimental conditions. The last explanation would predict that as data
structure is the relevant aspect in Prolog, this information type would be the most important for Prolog
programmers regardless of experimental task and conditions.

The experiment described in this section tried to find out which one of these explanations is more likely
for the case of Prolog by using a recognition experimental task.

4.1 Hypotheses

The choice of focal structures in program comprehension is affected by several factors, programming
language and naming style among them. Therefore, it is a combination of these factors that determines
what programmers consider as focal structures in a specific case. Focal structures related to data
structure aspects will be relevant for poor naming style experimental conditions. However, there will be
no structures that can be considered as focal for the case of meaningful naming style.

11



4.2 Design

This experiment was a 2 X 2 X 4 factor design with three independent variables (expertise level, naming
style and kind of structure and two dependent variables (response time and success level of recognition).
The expertise levels were expert and novice, the naming styles were meaningful and cryptic and the
kinds of structures were focal according to functional aspects, non-focal according to functional aspects,
focal according to data structure aspects and non-focal according to data structure aspects.

4.3 Subjects and procedure

The subjects of the experiment were 20 novices and 20 experienced Prolog programmers. The novice
population comprised undergraduate students who had taken a one term introductory course in Prolog.
Most of them were second or third year students and knew at least two more languages apart from
Prolog. As in the first experiment, the novice population was inexperienced in Prolog but not in
programming in general.

The experienced programmer population had on average 11 years of Prolog programming experience and
had written programs longer than three thousand lines (on average). They were either lecturers or
researchers at academic institutions and eight of them had taught a Prolog course.

As the experimental materials of this experiment were similar to the ones of the experiment reported in
the previous section, the subjects in these two experiments were different.

The experimental procedure was very similar to the one applied in Davies (1994). Each programmer
performed four code recognition sessions. In each of these sessions, they were presented with a short
Prolog program for a period of three minutes. They were asked to study and memorise this program.
Following this presentation, sixteen program segments were displayed on the screen and the subjects had
to indicate whether the segment was in the program they had studied or not. Their answer and response
time was recorded. These four sessions collected data about meaningful and cryptic coding styles, focal
structures of plans and Prolog schemas, and in each of these structures about focal and non-focal
segments of code. Of the four sessions, two were for programs with poor naming style and two for
programs with meaningful naming style. In each session, eight of the program segments that the
subjects had to recognise were related to focal structures of plans and the other eight to Prolog schemas.
For each of these eight segments, four belonged to the program they studied and the other four to
programs that performed similar tasks. Also, only four of these eight segments were focal structures,
either from the program they studied or from the similar versions.

Non-focal structures, either from plans or from schemas, meant any segments of code which were not
focal for its own kind. This means that non-focal structures of one kind could include focal structures of
the other kind. This was because there could not be a direct comparison between focal structures of
plans and those of schemas. Therefore, focal structures of plans (and of schemas) had to be compared
against everything outside them. They could not be compared directly because focal structures of plans
involve a small number of elements and comprise only one line, while focal structures of schemas are
scattered through several lines and clauses and include more elements.

Additionally, after each recognition session subjects were presented with eight questions relating to
functional and data structure aspects. There were two reasons to include this subtask in the
experimental session. First, to verify that there were differences in the quality of comprehension between
the novice and experienced groups and also because there was an implicit assumption in the formulation
of the hypothesis about the type of information that naming style, among other factors, hides or makes
accessible. It is assumed that one of the effects of a cryptic naming style, especially for a language which
1s very sensitive to this aspect, is that information about function is obscured while information about
data-structure is made accessible. If this is in fact the case, the subjects, especially the experienced ones,

12



1)

Average is RainAmount / NumberOfDays.
2)

next_value(NewRain,Rain,Rest).

3)

total_rain([]-

total_rain([Rain|Rest]
total_rain(Rest
4)

total_rain([Rain] ,Rain-

total rain([Rain|Rest]
total_rain(Rest

Figure 10: Probe segments of code for the ‘rainfall’ program.

would be able to answer questions about data-structure more accurately than those related to function
only for the case of programs with cryptic naming style.

4.4 Materials

This subsection discusses the programs, the code segments and the questions that were used in the
experiment.

There were four experimental programs. The first one of these transforms sublists of digits into decimal
numbers and then sums them up. The second is a version of the bubble sort, the third implements a
decimal to binary conversion and the fourth is a Prolog version of the ‘rainfall’ program. All these
programs are around 23 lines in length, perform a specific calculation on their own and have well defined
input and output values. As one of the interests in the experiment is to compare comprehension of
programs with different naming styles, each one of these programs had two versions, one with
meaningful procedure and variable names and the other with cryptic naming style for these elements.
Three of these programs were basically the same as those which were used for the experiment reported
in the previous section. The program shown in Figure 5 was also used for this experiment.

The four experimental programs were analysed in terms of their focal segments of Plans according to the
definition by Rist (1995) and in terms of their focal segments of Schemas according to the definition

by Gegg-Harrison (1991), taking as the focal segments those elements that Gegg-Harrison considers as
compulsory. As can be seen in the program in Figure 5, and as is indeed the case for the other
experimental programs, the focal segments of Plans and Schemas do not have elements in common. It
can also be seen that while focal segments of Plans normally comprise a single line, focal segments of
Schemas are usually scattered through several lines of code.

After studying the code for three minutes, subjects were presented with sixteen probe segments to
decide whether they belonged to the program they just had seen or not. Some of the code segments for

13



1. Is one of the tasks of the program to obtain the number of input data items supplied by the user?
2. Does the program find out which is the input number with the maximum number of occurrences?

3. Does the main processing of the elements of the list in the total rain/4 procedure happen in a back
to front order?

4. Ts the list in the total rain/4 procedure processed until a certain element is found?

Figure 11: Some comprehension questions for the ‘rainfall’ program.

the ‘rainfall’ program are shown in Figure 10. The segments that did not belong to the displayed
programs belonged to programs that performed similar tasks.

To ensure that the difficulty of the recognition task was similar for all the probe items, and therefore
that any differences in the subjects’ performance were due to the type of probe items rather than to
other factors, the probe items were controlled for several aspects. These controls ensured that the probe
items, when divided into subgroups according to the experimental conditions (focal or non-focal, schema
or plans and belonging or not belonging to the displayed program) had a similar recognition difficulty.
The criteria to establish this similarity was based on the serial position of the code segments in the
program, on their length and, for the case of those that did not belong to the displayed program, on the
degree to which they resembled a code segment of this program. The probe items were evenly distributed
with respect to their serial position in the code, they had roughly the same size and the distractor items
had approximately the same same degree of similarity towards the code of the studied program.

4.4.1 Comprehension questions

As mentioned in Section 4.3, the accuracy rate for the comprehension questions would be important in
confirming the assumption that naming style influences the kind of information that is available to
programmers and therefore the characteristics of their mental model. According to this assumption,
when faced with programs with a cryptic naming style, programmers resort to basing their
comprehension on data-structure aspects. If this is indeed the case, the accuracy rate for questions
related to function should be less than the accuracy rate of those related to data-structure for the case of
cryptic naming style. These rates should be similar for the case of programs with meaningful naming
style.

There were yes-no comprehension questions for functional and data structure aspects. Some of the
comprehension questions for the case of the ‘rainfall’ program are presented in Figure 11. The first two
questions refer to functional aspects while the last two are related to data structure issues.

4.5 Results

The results of the experiment comprise analyses for the case of accuracy and response time of both
segment recognition and answering of the comprehension questions. For each one of these four cases
repeated measures ANOVAs for skill level as between subjects condition and naming style, kind of
structure (Plans or Schemas) and segment category (focal or non-focal) as within subjects variables were
run after verifying that their assumptions had been met.

The results of the segment recognition accuracy are summarised in Figure 12. It can be seen that
experienced Prolog users, unlike novices, had a better accuracy of recognition for focal segments than for
non-focal segments. In general, experienced users were better than novices in the recognition task,

14



1.0
’ 8
Lol
e B
=
o e— . :
v hemmmmmmmm—mmmm s
=) B 5
=T
[a=s
= B 5
i)
)
< 4
=
(W)
= 2 5
! 1
0.0 .
Novices Experienced

Figure 12: Probe item recognition accuracy rate by novices and experts.
(—) focal segments; (---) non-focal segments.

F(1,38) = 16.94, p < .01; and key segments were better recognised than non-key segments, F(1,38) =
44.93, p < .01; but there were interaction effects for these two conditions, F(1,38) = 13.81, p < .01.
There was an absence of interaction effects between segment categorisation, naming style and kind of
structure (Schemas or Plans), which means that experts were more accurate in recognising focal rather
than non-focal segments regardless of naming style and of the kind of information type (function-Plan,
data structure-Schema).

The results for the segment recognition response time show main effects for skill level, F(1,38) = 4.24, p
< .05; and for segment category, F(1,38) = 7.85, p < .01, indicating that in general experts were slower
than novices in discriminating code segments and that key segments were recognised more quickly than
non-key segments. Interaction effects near to significant for these two conditions showed a tendency for
the difference in key non-key segment recognition to be larger for experienced users than for novices,

F(1,38) = 2.92, p = .096 (Figure 13).

The results of the accuracy of comprehension question answering show that experts had better average
accuracy rate, F(1,38) = 56.8, p < .01 and that the meaningful naming style was more helpful to all
programmers, F(1,38) = 7.75, p < .01.

The results of the response time for the question answering experimental task show that questions about
function were answered quicker than questions about data structure for all the experimental conditions,

F(1,38) = 5.58, p < .05.

4.6 Discussion

In general, the results of the experiment do not support the view that naming style is important in
determining the kind of focal structure and therefore information type preferred by Prolog programmers.
Both kinds of information, function and data structure, seem to be important for experienced Prolog
programmers regardless of naming style. Experienced Prolog programmers, unlike novices, seem to make
a distinction between key and non-key structures, marking the former as more relevant. This distinction
is not affected by the kind of key segment considered (Schemas or Plans) or by the naming style of the
programs they comprehend.

This result 1s somehow surprising because the hypothesis contained the implicit assumption that there
could only be one kind of focal structure when comprehending a program. The experimental results
seem to indicate that programmers might consider different kinds of segments as focal depending of the

15



MEAN RESPONSE TIME (in secs.)

2 2
Movice Experienced

Figure 13: Probe item recognition response time by novices and experts.
(—) focal segments; (---) non-focal segments.

aspect of the code they are focusing on. If they are trying to understand data structure issues, a set of
program segments would be relevant for them, but if they are trying to decode functional information,
they might consider a different set of code segments as important.

At least for this experiment, key segments of Plans and of Schemas seem to be relevant for Prolog
programmers. This seems to indicate that function as well as data structure aspects are important for
this programming language. However, there might be other aspects also relevant for Prolog
programmers. It might also be the case that also aspects such as control-flow or data-flow are important
and have their own focal structures.

The experiment reported in this section replicated Davies (1994) results globally, but there are several
differences. First, Davies only considered focal structures of Plans, and the present experiment shows
that focal structures might not be restricted to Plans and therefore to functional aspects, and even more
importantly, that several kinds of structures might be considered as relevant by programmers. Another
difference is that in this experiment, experienced programmers were in general slower than novices in the
segment recognition task, while in Davies’ study the former group were quicker than the latter. It could
be said that as experienced programmers had a higher accuracy rate than novices, the response time
difference seems to be a speed/accuracy trade off. However, this does not explain the discrepancy of
results with Davies’ study.

It has to be said that the experimental settings in these two experiments were not identical and some of
these differences might account for the different results in response time. One of the most important
differences is that Davies’ subjects had a longer period of time to study the program (ten minutes as
opposed to three minutes). This difference in study time was chosen because in pilot sessions,
experienced programmers, and even some novices, found ten minutes to be too long a time to
comprehend the programs. Three minutes seemed to be just enough for them. However, it is difficult to
understand how a longer exposure to the experimental programs might had made a difference in making
experienced users quicker than novices. Apart from this difference, the results support the finding that
focal segments are quicker to recognise and there is a tendency for experts to show a more pronounced
difference in this recognition time.

The question answering task was important to establish that there was a difference in comprehension
performance between experienced and novice Prolog users. Also, the lack of interaction effects for kind
of structure and naming style seem to be in agreement with the similar results (no interaction effects) for
segment categorisation, kind of structure and naming style for the segment recognition task. The
experimental hypothesis predicted that naming style would have an influence over the kind of

16



information that could be detected in the program, and that therefore both the recognition and question
answering task would have different results for different naming styles and information types. Just as the
difference between focal and non-focal segments remained constant for both of these conditions, the
question answering accuracy did not vary depending on both naming style and kind of structure. There
were main effects for naming style, which indicate that cryptic programs are more difficult to understand
than meaningful code, but it seems valid to assume that in both cases programmers find both kinds of
key segments relevant.

5 General discussion

Both experiments support the notion of knowledge restructuring proposed by Davies (1993, 1994) that
states that experienced programmers restructure their structural knowledge to allow some elements of it
to become relevant or salient. However, the results of these experiments indicate that this knowledge
restructuring is not exclusive to Plans and functional information. For the case of Prolog, programmers
also seem to restructure their programming knowledge according to at least another type of
programming information (data structure). It seems also that this restructuring of several aspects of
programming knowledge might produce several kinds of key segments in the code.

The experiments reported here show that information about data structure and Prolog Schemas, an
associated model of this type of structural knowledge, are important for Prolog programmers and that
they restructure this kind of programming knowledge as a result of experience.

The finding that there might be more than one kind of focal structure in a program might seem counter
intuitive at first. It would seem that only one aspect could be relevant to programmers. However, the
results of these experiments seem to support the idea that comprehension involves the detection of
several aspects of the program, and each of these aspects might have its own organisation and
hierarchical relations. Which aspects are relevant and to what degree might depend on the programming
language and the programmer’s experience, among other factors. For Prolog programmers, it seems that
function and data structure are two important aspects, although there might be more than these two
relevant information types.

One issue that remains to be explained is the reason for the discrepancy in the experimental results
concerning Plan focal structures. In the first experiment, the only relevant key segments were those of
Schemas, while in the second experiment both key segments of Schemas and of Plans seemed to be
relevant. Both experiments had similar settings and the programmer subjects had similar experience and
background. One of the differences between these two experiments was the nature of the experimental
task. The first experiment used a program recall task while the second applied a program recognition
task. As mentioned in Section 3.5, according to Kintsch (1970), one important difference between these
two memory tasks is that recall, unlike recognition, is sensitive to material that can be associated and
organised clearly.

Key segments of Plans, unlike those of Schemas, do not seem to have a well defined internal organisation
because they are dependent from other parts of the program. If these other parts of the program could
not be recalled successfully, it would be harder for key segments of Plans to be recalled accurately. In
the second experiment, on the other hand, Plan key segments could be recognised even when other parts
of the program necessary for their complete understanding were not present. So the disparity of results
could be explained by a combination of the experimental task and the hidden dependencies (in terms

of Green’s(1999) cognitive dimensions) of Prolog.

Further support for the notion of this sensitivity of results to the experimental task is provided
by Navarro-Prieto and Canas (1998), who report differences even in the results of recognising to accept
(when the probe segment belongs to the studied program) and recognising to reject (distractor items).

17



The global results of the study indicate that Schemas are a plausible model of structural knowledge for
Prolog, but functional information, and Plans, are important as well for Prolog programmers. This
result does not rule out the possibility that there might be further aspects of the code that are
important for this programming language.

6 Conclusions

This paper reports a study that explored which programming aspect seems to be relevant for Prolog
programmers adopting the model of structural knowledge organisation proposed by Davies (1993, 1994),
but extending the notion of focal structures to consider not only function but also other programming
information types.

The study reported in this paper comprised two experiments. The first one was of an exploratory nature
and tried to find out which one of four programming knowledge structures seems to be important for
Prolog programmers when doing program comprehension. It seems that information related to data
structures was important in this case. This first experiment involved a program comprehension and
memorisation task followed by the recollection of the program by three groups of subjects: experienced
programmers, novices and non-programmers. There were significant differences when comparing the
performance of these three groups only for the case of Schemas, a structure that emphasises data
structure relationships. These results suggested that data structure relations are important for the
comprehension process of Prolog programmers.

The second experiment tried to replicate the results of the first one this time by applying a recognition
instead of a recall task taking into account only two kinds of information types, Schemas and Plans.
This experiment was intended to clarify the role of naming style in Prolog program comprehension. For
this experiment, two groups of Prolog programmers, novices and experienced, tried to understand and
memorise several Prolog programs. After this study time, they tried to discriminate program segments
as belonging to the studied programs or not. There were significant differences for these two groups
when comparing their recognition accuracy. Experienced programmers were able to recognise segments
categorised as focal better than novices, regardless of kind of structure (Plans or Schemas) or of naming
style. The results of this experiment indicate that at least for the case of Prolog, experienced
programmers restructure the organisation of their Plan and Schema knowledge to allow that certain
elements of these structures become more relevant than others.

The reason for plan information not being apparently important in the first experiment seems to be due
to the difference in the two experimental tasks used in this study, recall and recognition. It has been
argued that recall facilitated high rates of accuracy for Schemas but not for Plans. Therefore, it is
possible that some other structural models and information types besides Plans and Schemas might be
important for Prolog programmers.

Experienced programmers seem to construct several views of the program, according to the different
types of information implicit in the program text. It is likely that their structural knowledge for each of
these aspects of the code shows an organisation in which specific elements are more relevant than others.
This would imply that the notion of focal structures involves not only function but other types of
programming information.

Acknowledgments

The author would like to express his thanks to Ben du Boulay of COGS, Sussex University for his help
in the preparation of this paper, to Thomas Green of CBL, Leeds University, for his advice in the design

18



of the first experiment and to Judith Good of HCRC, Edinburgh University, and Chris Taylor, of COGS,
Sussex University, for their help in contacting Prolog experienced users. Thanks also to all the subjects
for their time and patience.

References

Bellamy, R. K. E., & Gilmore, D. J. (1990). Programming plans: Internal and external structures. In
Gilhooly, K., Keane, M. T. G., Logie, R. H., & Erdos, G. (Eds.), Lines of thinking: Reflections on
the psychology of thought, Vol 1. Wiley, London, U.K.

Bergantz, D., & Hassell, J. (1991). Information relationships in PROLOG programs: how do
programmers comprehend functionality? International Journal of Man-Machine Studies, 35,
313-328.

Bowles, A., & Brna, P. (1993). Programming plans and programming techniques. In Brna, P., Ohlsson,

S., & Pain, H. (Eds.), World conference on artificial intelligence in education, pp. 378-385
Edinburgh, UK. Association for the advancement of computing in education.

Brna, P., Bundy, A., Todd, T., Eisenstadt, M., Looi, C. K., & Pain, H. (1991). Prolog programming
techniques. Instructional Science, 20(2), 111-133.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs. International Journal

of Man-Machine Studies, 18, 543-554.

Davies, S. P. (1990). The nature and development of programming plans. International Journal of

Man-Machine Studies, 32, 461-481.

Davies, S. P. (1993). Models and theories of programming strategy. International Journal of
Man-Machine Studies, 39, 237-267.

Davies, S. P. (1994). Knowledge restructuring and the acquisition of programming expertise.
International Journal of Human Computer Studies, 40, 703-726.

Detienne, F. (1990). Expert programming knowledge: a schema-based approach. In Hoc, J., Green, T.
R. G., Samurcay, R., & Gilmore, D. J. (Eds.), Psychology of Programming. Academic Press, Ltd.,
London, U.K.

Gegg-Harrison, T. S. (1991). Learning Prolog in a schema-based environment. Instructional Science, 20,

173-192.

Gilmore, D. J., & Green, T. R. G. (1988). Programming plans and programming expertise. Quarterly
Journal of Experimental Psychology, 40A, 423-442.

Green, T. R. G. (1999). Building and manipulating complex information structures: issues in prolog
programming. In Brna, P., du Boulay, B., & Pain, H. (Eds.), Learning to build and comprehend
complex information structures: Prolog as a case study. (in press).

Green, T. R. G., Bellamy, R. K. E.; & Parker, J. M. (1987). Parsing and Gnisrap: a model of device use.
In Olson, G. M., Sheppard, S., & Soloway, E. (Eds.), Empirical Studies of programmers, second
workshop, pp. 132-146 Norwood,NJ. Ablex.

Kintsch, W. (1970). Learning, memory and comceptual processes. John Wiley & sons, inc.

Navarro-Prieto, R., & Canas, J. J. (1998). Mental representation and imagery in program
comprehension. In Green, T. R., Bannon, L., Warren, C., & Buckley, J. (Eds.), Proceedings of the
Ninth Furopean Conference on Cognitive Ergonomics Limerick, Ireland.

19



Ormerod, T. C., & Ball, L. J. (1993). Does design strategy or programming knowledge determine shift of
focus in expert Prolog programming?. In Empirical Studies of programmers, fifth workshop, pp.

162-186 Norwood,NJ. Ablex.

Pennington, N. (1987). Stimulus structures and mental representations in expert comprehension of
computer programs. Cognitive Psychology, 19, 295-341.

Rist, R. S. (1989). Schema creation in programming. Cognitive Science, 13, 389-414.
Rist, R. S. (1995). Program structure and design. Cognitive Science, 19, 507-562.

Wiedenbeck, S. (1986). Processes in computer program comprehension. In Soloway, E., & Tyengar, S.
(Eds.), Empirical Studies of programmers, first workshop, pp. 48-57 Norwood,NJ. Ablex.

20



