
R. Shumaker (Ed.): Virtual and Mixed Reality, LNCS 5622, pp. 97–105, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Is Embodied Interaction Beneficial When
Learning Programming?

Pablo Romero1, Benedict du Boulay1, Judy Robertson2,
Judith Good1, and Katherine Howland1

1 University of Sussex, Department of Informatics, Brighton BN1 9QH, UK
2 Heriot-Watt University, Department of Mathematical and Computer Sciences Edinburgh

EH14 4AS, UK
pablor@sussex.ac.uk

Abstract. Embodied interaction has been claimed to offer important advantages
for learning programming. However frequently claims have been based on
intuitions and work in the area has focused largely around system-building
rather than on evaluation and reflection around those claims. Taking into ac-
count research in the area as well as in areas such as tangibles, psychology of
programming and the learning and teaching of programming, this paper identi-
fies a set of important factors to take into account when analysing the potential
of learning environments for programming employing embodied interaction.
These factors are formulated as a set of questions that could be asked either
when designing or analysing this type of learning environments.

1 Introduction

Often learning environments designed to introduce children to computer program-
ming have used some form of interaction with the physical world. Efforts in this area
have tended to concentrate on designing and building environments capable of this
interaction but the motivation for the approach as well as the specifics of the instruc-
tional design have been driven largely by intuitions. Although there has been some
research aimed at building theories and frameworks in areas such as tangibles in
learning, computer programming poses specific challenges related to taking advan-
tage of the concreteness of the physical world in order to understand and master an
abstract task such as programming.

An embodied type of interaction aims to exploit the familiarity of physical world
couplings between actions and their effects by employing analogies based on those
couplings [1]. An example of exploiting familiar analogies are electronic organisers
that can present documents in portrait or landscape mode depending on how they are
physically orientated. Employing analogies of physical world couplings tends to work
well for tasks that require a concrete, direct form of manipulation, however computer
programming is not about direct manipulation.

Computer programming is related to specifying abstract behaviours to be
performed by the computer. These behaviours are abstract because, for instance, they
might take place in the future and / or might depend on certain conditions [2]. Pro-
gramming activities are therefore radically different from direct manipulation tasks

98 P. Romero et al.

and it is not clear whether the benefits of familiar coupling analogies apply in this
case. This paper analyses where the benefits of embodied interaction may lie by iden-
tifying a set of important factors to take into account when designing or analysing a
programming learning environment with embodied interaction. The second section
highlights some of the difficulties faced by novice programmers, the third section
discusses some of the potential benefits that embodied interaction could offer to the
learning of programming, the fourth section describes how embodied elements have
been incorporated into learning environments for programming, the fifth presents a
set of important factors to consider for this type of environments and the sixth
discusses some important aspects of these factors.

2 The Difficulties of Learning Programming

Programming is hard precisely because, among other factors, its abstract nature
prevents the use of direct manipulation [2]. Du Boulay [3] separates into five areas the
difficulties facing those who are learning to program for the first time. First is a gen-
eral orientation towards the nature of programming itself. It involves clarifying what
programs are for, what can be done with them and what is the point and value of
them. Second is the notional machine. This is the abstract machine which will execute
the program. We do not mean the hardware or memory registers themselves. It is not
about bits and bytes, but about the kind of activities that one can describe in the pro-
gramming language being learnt. For example, printing a word, causing a Logo turtle
to move forward, adding two numbers together, adding a value into a table and so on.
The programming paradigm (declarative, functional, object-oriented) is determined
by the particular instantiation of the notional machine. Third is the notation of the
programming language, in other words the way that the programming language as a
language is expressed the syntax, where the semantics is covered by the notional ma-
chine. Fourth is standard structures or programming plans [4, 5]. This is about how
one puts standard phrases and sentences of the language together to make meaningful
paragraphs or essays. For example, how one uses a looping construct to iterate
through a list, or how one organises a program into separate methods or separate func-
tions. Fifth is pragmatics: how one makes use of the overall environment (e.g. the
editor and the compiler or the program development environment) to get from the
idea for a program to a working program itself. Pragmatics also covers developing the
skills of effective design and debugging to ensure that the program does what it is
supposed to do. Frequently the importance of pragmatics or strategic programming
knowledge is underestimated [6].

Typically when learning a second programming language, the general orientation
and some aspects of the pragmatics can be generalised from what has already
been learned, even if the new notation, the new notional machine and the new struc-
tures are quite different. And when learning a third language similarities of notation,
notional machine and structures are likely to emerge to simplify and shorted the
learning process.

Within a learning environment containing embodied or tangible elements, the
question arises as to how far the inclusion of those embodied and/or tangible elements
can assist in the mastering of a difficult task such as programming.

 Is Embodied Interaction Beneficial When Learning Programming? 99

3 Potential Benefits of Embodied Interaction

Exploiting the familiarity of physical world couplings between actions and their
effects by employing analogies and metaphors based on those couplings is important
not only for embodied interaction in general but also for tangibles learning environ-
ments. These perceived couplings [7] are an important aspect of the meaningful inter-
action with the world to which embodied interaction aspires [1]. The couplings can be
literal, when there is a close one-to-one mapping in the analogy, or more abstract,
when the mapping is looser and the relationship between actions and effects has a
certain degree of arbitrariness [8]. Abstract couplings are not necessarily negative,
Hornecker and Buur [7] point out that many tangible environments aim for literal
couplings missing out on opportunities to exploit people’s imagination or to provide
useful re-representations of information.

The relationship between actions and effects in abstract couplings is usually me-
diated by a representation. The more arbitrary the representation the more abstract the
coupling. The correspondence could be based on symbols, which have an arbitrary
structure, or on icons, which have a more direct perceptual correspondence, for exam-
ple [9, 10]. Hurtienne and Israel [11] propose that physical manipulations can be
employed not only for literal but also for abstract correspondence. They propose to
employ the concept of Image Schemas [12], abstract representations of recurring dy-
namic patterns of bodily interactions, as a sound basis to provide abstract couplings in
tangible environments. According to them, Image Schemas capture patterns of sen-
sory-motor experiences, exist beneath conscious awareness and can be represented
visual, haptic or kinesthetic way for example. The container schema, for example, is a
pattern characterised by comprising an outside, an inside and a boundary between
them and is derived from our daily experience with houses, rooms, boxes, cars, etc.
Image Schemas can have a central importance in taking advantage of the concreteness
of the physical world in order to support the learning of an abstract task such as
programming.

Frequently embodied environments mix representations of different types in the
perceived couplings, for example, the shape of a toy car could communicate how it
could be used but it could also have an attached printed label with symbols to for ex-
ample, indicate additional functions or characteristics. There are potential advantages
and disadvantages in mixing representations of different types; one representation
could, for example, constraint the interpretation of another and in this way support
the learner [10].

Besides aspects associated with the notion of perceived couplings, embodied inter-
action can offer other benefits that could be particularly important for programming
learning environments. Important aspects in this sense are those that have to do with
social interaction and motivation. Embodied interaction has a strong potential for
enabling collaboration, which is an important aspect when learning to program [13].
Being able to interact with the environment from multiple points, the inherent visibil-
ity of actions and events happening in the physical world and the sheer size of objects
and physical environments [7] make embodied interfaces especially suitable for
enhancing communication and collaborative learning.

Embodied interaction and its potential for collaboration may also support the un-
derstanding of abstraction in a more direct way. Deictic references to physical objects

100 P. Romero et al.

and gestures performed while communicating have been found to support the emer-
gence of scientific languages and ontologies in school children [14]. Verifying
whether this is also the case when using embodied interaction for the learning of
programming would be of central importance for the area.

The potential of embodied interaction for motivation was highlighted in one of the
first environments employing tangible elements [15]. Embodied interaction was
claimed to increase the feelings identification with the characters of the environment
and in this way the level of absorption in the task. Additionally, embodied interaction
can enable performative action [7], which in turn has been suggested as capable of
inducing motivating experiences [16].

4 Embodied Interaction in Programming

The discussion above suggests that there are three important dimensions to consider
when employing embodied interaction in learning programming environments: where
the embodied element is located (a) pragmatically and (b) conceptually, and (c) what
its nature is. The embodied element could target any of the five sources of difficulty
for novice programmers outlined in Section 2. For example the embodied element
could aim to provide cues about the workings of the notional machine or about the
nature of the notation. In practical terms, the embodied element could be associated
with any of the elements of the environment: the input, the output, the editor, the
debugger, etc. Finally the nature of the interaction could be predominantly haptic or
kinesthetic but could combine these with symbolic or iconic elements.

For example, in Logo and its follow-up versions [15, 17–20], the embodied ele-
ment is associated with their output, a tangible robotic system. Logo aimed to teach
programming concepts to children by controlling a robotic turtle. The only tangible
element in Logo was its output (the robotic system). The program had to be written by
conventional means (typing code to a computer) and the notation was a simplified
version of Lisp. Other versions such as the Button Box [18] and Quetzal [20] had ad-
ditional embodied elements. The button box was a device employed to enable
children to control the turtle without having to learn how to type commands on a
keyboard. It had a series of buttons that had a one to one mapping with the main con-
trolling functions. Additionally, there was a record button that enabled children to
record a sequence of commands and a play button that allowed the command
sequence to be played. Although still using a type of keyboard as input, the couplings
between actions and effects where more direct than those of a conventional key-
board.

Quetzal is an interesting system that allows children to edit Lego Mind-storms [19]
programs with tangible tokens representing keywords of a textual programming lan-
guage. Children create program statements by physically connecting tokens to form
chains that describe the flow of control of the program, similarly to the way textual
programs are written as a sequence of statements on the screen with conventional
textual languages. In this case there are two independent embodied elements, one is
related to the editor of the environment and the other to its output. The editor uses a
combination of symbolic and tangible elements.

 Is Embodied Interaction Beneficial When Learning Programming? 101

Another example with a different combination of embodied elements are tangible
programming environments. Usually in these systems the focus of the embodied
element is the notation. One typical tangible programming environment is the Elec-
tronic Blocks system [21]. Electronic Blocks uses Lego blocks augmented with
sensors, actuators and logic circuits to enable children to program logical behaviours
by joining blocks that perform simple operations. In this case the notation uses a
combination of symbolic, iconic and haptic elements. The notation has symbolic ele-
ments as blocks of different colours belong to different categories. It also has
iconic aspects as the shapes of the blocks indicate their use (for example those shaped
as cars can run on wheels). Finally it is haptic as statements of the language are con-
structed by physically joining the blocks.

The three dimensions discussed in this section plus some of the factors described in
previous sections can be used to analyse the learning potential of embodied environ-
ments for programming. The following section offers an initial framework that can
be used when designing or analysing a programming learning environment with an
embodied style of interaction.

5 Important Factors for Embodied Environments for Learning
Programming

A set of important factors for programming learning environments with an embodied
style of interaction are illustrated on Table 1. These factors could be classified as
technical and social. Technical factors could be further classified into those related
with the nature of the interaction and those associated with the place where interaction
occurs. Social factors could also be further classified into collaborative and those re-
lated to motivation. This section talks about them in terms of questions that can be
asked when designing or analysing a programming learning environment using
embodied interaction.

5.1 Nature of the Interaction

These factors have to do with the type of the perceived couplings, how abstract they
are and the type of support they could offer.

• What is the nature of the bodily interaction? It could be symbolic, iconic, haptic,
kinetic, gestural, or a combination of them.

• How literal or abstract are the action-effect couplings provided in the environ-
ment? If they are abstract are they based on a sound framework of correspondence
such as Image Schemas for example?

• What is the support intended through the bodily interaction type? if the interaction
type is mixed (iconic and haptic for example), there might be benefits associated
with external representations, one representation constraining the interpretation of
another for example. This could enable, for example, to allow a progression from
understanding more concrete to more abstract notations.

102 P. Romero et al.

Table 1. Some important factors for programming environments with embodied interaction

Interaction type
Degree of abstraction Nature
Representational support
Programming concepts

Technical

Focus
Environment elements
Affordances of embodiment

Collaboration
Scaffolding abstraction
Possibility of performative action

Social
Motivation

Body-syntonic

5.2 Focus of the Interaction

These factors refer to the place where the embodied element occurs. The place could
be conceptual (one of the difficult aspects of learning programming) or related to the
programming environment (input, output, editor, etc.).

• What programming concept understanding is the bodily interaction aiming to
support?

• Do familiar coupling analogies:
• Help to visualise the scope and general orientation of the system?
• Provide cues about the workings of the notional machine and the nature of the

notation?
• Constrain or direct users into producing valid structures?
• Offer guidance to perform practical tasks?
• Where in the programming environment is the bodily interaction taking place? It

could take place in the input, editor, output, debugger, etc.
• What is the relationship between the targeted concept and the place of the envi-

ronment where the bodily interaction takes place? For example, is a tangible output
aimed to support the understanding of the notional machine?

5.3 Collaboration

One of the most important characteristics of embodied environments is their potential
for collaboration. Here we consider, besides the generic collaborative affordances,
those that could support the understanding of abstraction.

• What are the collaborative affordances of the bodily interaction style? For exam-
ple, is the sheer size of the tangible elements conducive to collaboration?

• Are collaborative activities aimed at scaffolding the mastering of abstraction? For
example deictic references to physical objects and gestures have been found
to support the emergence of scientific language and ontologies in science learning.
They might play a similar role in understanding how to specify abstract
behaviours.

 Is Embodied Interaction Beneficial When Learning Programming? 103

5.4 Motivation

Similarly to collaboration, motivation is an important factor for embodied environ-
ments. For programming, performative action [7] and body-syntonic relations [15] are
particularly important.

• Does the system give opportunities for performative action when carrying out the
programming task? Combining programming and performative action might
induce motivating experiences and appeal to segments of the population who are
not usually attracted to programming.

• Is the type of interaction aimed at producing body-syntonic relations with users?

6 Discussion

This paper offers an initial framework that can be useful for analysing the learning
potential of programming environments employing an embodied type of interaction.
Perhaps more importantly, the initial framework can be used before any system has
been built to maximise the learning potential of such environments.

The factors taken into account by the initial framework can be classified into tech-
nical and social. Within the technical factors, an important consideration is the degree
to which the action-effect couplings provided by the environment are literal or
abstract. As mentioned above, embodied interaction aims to exploit the familiarity of
physical world couplings but programming, on the other hand, could benefit from
employing abstract couplings as a way of specifying abstract behaviours. A concept
that can bridge this apparent mismatch is Image Schemas [12]. Image Schemas cap-
ture patterns of recurring bodily interactions and therefore encapsulate important
aspects of our familiarity with the physical world. At the same time, they are generic
enough to be employed for abstract couplings. Image Schemas have been employed to
provide abstract couplings in tangible environments [11]. However, they have not, to
the best of our knowledge, been employed in programming environments employing
an embodied type of interaction. The potential of Image Schemas for this type of
environments needs to be evaluated empirically.

Social factors can be particularly important as they can address sociological barri-
ers to programming such as lack of social support and compelling contexts [22].
Social support can be enhanced by the potential of embodied environments for col-
laboration. The degree of collaboration can be increased if the embodied elements are
associated with the actual environment rather than just with its output. Traditional
tangible robotic systems, for example, limit the potential for collaboration by employ-
ing a conventional desktop setup for the actual programming environment.

Finally performative action can be an important factor for providing compelling
contexts. Unfortunately most of the current embodied environments for programming
do not provide many opportunities for performative action. These opportunities can
be enhanced by environments which embed their embodied elements in large physical
spaces (rooms for example) [23] or by those that enable whole body interaction [24].

104 P. Romero et al.

7 Conclusion

This paper has motivated and presented a set of important factors to take into account
when analysing the learning potential of programming environments employing an
embodied type of interaction. These factors are classified into technical and social.
Technical factors are further classified into those related with the nature of the inter-
action and those associated with its focus. Social factors have been classified into
collaborative and those related with motivation.

The factors are presented as a set of questions that could be asked when designing
or analysing programming learning environments employing an embodied type of
interaction.

These factors and questions suggest that if the potential of embodied interaction is
maximised, the learning of programming would be much more compatible with a stu-
dio approach and in many ways similar to learning in disciplines such as architecture
or product design. It would be similar not only because the end product could be
tangible, but also because of the emphasis on a hands-on approach, on collaboration
and on performative action. However this is a conjecture, work that focuses not only
on system-building but also on empirically evaluating the benefits and implications of
embodied interaction in the learning of programming is needed.

References

1. Dourish, P.: Where the action is: the foundations of embodied interaction. MIT Press,
London (2001)

2. Blackwell, A.: What is programming? In: Kuljis, J., Baldwin, L., Scoble, R. (eds.) Pro-
ceedings of the 14th annual workshop of the Psychology of Programming Interest Group,
pp. 204–218 (2002)

3. du Boulay, B.: Some difficulties of learning to program. In: Soloway, E., Spohrer, J. (eds.)
Studying the Novice Programmer, pp. 283–299. Lawrence Erlbaum, Hillsdale (1989)

4. Rist, R.S.: Plans in programming: definition, demonstration and development. In: Solo-
way, E., Iyengar, S. (eds.) Empirical Studies of Programmers, first workshop, pp. 28–47.
Ablex Publishing, Norwood, New Jersey (1986)

5. Gilmore, D.J., Green, T.R.G.: Programming plans and programming expertise. Quarterly
Journal of Experimental Psychology 40A, 423–442 (1988)

6. Gilmore, D.J.: Expert programming knowledge: a strategic approach. In: Hoc, J., Green,
T.R.G., Samurcay, R., Gilmore, D.J. (eds.) Psychology of Programming, pp. 223–234.
Academic Press, London (1990)

7. Hornecker, E., Buur, J.: Getting a grip on tangible interaction: a framework on physical
space and social interaction. In: CHI 2006: Proceedings of the SIGCHI conference on Hu-
man Factors in computing systems, pp. 437–446. ACM Press, New York (2006)

8. Price, S.: A representation approach to conceptualizing tangible learning environments. In:
TEI 2008: Proceedings of the 2nd international conference on Tangible and embedded in-
teraction, pp. 151–158. ACM Press, New York (2008)

9. Purchase, H.: Defining multimedia. IEEE MultiMedia 5, 8–15 (1998)
10. Ainsworth, S.: Deft: A conceptual framework for considering learning with multiple repre-

sentations. Learning and Instruction 16, 183–198 (2006)

 Is Embodied Interaction Beneficial When Learning Programming? 105

11. Hurtienne, J., Israel, J.H.: Image schemas and their metaphorical extensions: intuitive pat-
terns for tangible interaction. In: TEI 2007: Proceedings of the 1st international conference
on Tangible and embedded interaction, pp. 127–134. ACM Press, New York (2007)

12. Johnson, M.: The Body in the Mind: The Bodily Basis of Meaning, Imagination, and Rea-
son. The University of Chicago Press, Chicago (1987)

13. McDowell, C., Werner, L., Bullock, H., Fernald, J.: The impact of pair-programming on
student performance, perception and persistence. In: Clarke, L., Dillon, L., Tichy, W.
(eds.) Proceedings of the 25th International Conference on Software Engineering, pp. 602–
607. IEEE Computer Society, Washington (2003)

14. Roth, W.M., Lawless, D.: Scientific investigations, metaphorical gestures, and the emer-
gence of abstract scientific concepts. Learning and Instruction 12, 285–304 (2002)

15. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, New
York (1980)

16. Lindley, S.E., Couteur, J.L., Berthouze, N.L.: Stirring up experience through movement in
game play: effects on engagement and social behaviour. In: CHI 2008: Proceeding of the
twenty-sixth annual SIGCHI conference on Human factors in computing systems, pp. 511–
514. ACM Press, New York (2008)

17. Resnick, M., Martin, F., Sargent, R., Silverman, B.: Programmable bricks: toys to think
with. IBM Systems Journal 35, 443–452 (1996)

18. McNerney, T.S.: From turtles to tangible programming bricks: explorations in physical
language design. Personal Ubiquitous Computing 8, 326–337 (2004)

19. Boogaarts, M., Daudelin, J.A., Davis, B.L., Kelly, J., Levy, D., Morris, L., Rhodes, F.,
Rhodes, R., Scholz, M.P., Smith, C.R., Torok, R.: The lego mindstorms nxt idea book: de-
sign, invent, and build. Ubiquity 8, 2 (2007)

20. Horn, M.S., Jacob, R.J.K.: Tangible programming in the classroom with tern. In: CHI
2007: extended abstracts on Human factors in computing systems, pp. 1965–1970. ACM
Press, New York (2007)

21. Wyeth, P., Purchase, H.C.: Tangible programming elements for young children. In: CHI
2002: extended abstracts on Human factors in computing systems, pp. 774–775. ACM
Press, New York (2002)

22. Kelleher, C., Pausch, R.: Lowering the barriers to programming: A taxonomy of program-
ming environments and languages for novice programmers. ACM Computing Surveys 37,
83–137 (2005)

23. Montemayor, J., Druin, A., Chipman, G., Farber, A., Guha, M.L.: Tools for children to
create physical interactive storyrooms. Comput. Entertain. 2, 12–12 (2004)

24. Romero, P., Good, J., Robertson, J., du Boulay, B., Reid, H., Howland, K.: Embodied in-
teraction in authoring environments. In: Ramduny-Ellis, D., Hare, J., Gill, S., Dix, A.
(eds.) Proceedings of the second Workshop on Physicality, pp. 43–46. UWIC Press, Lan-
caster (2007)

	Is Embodied Interaction Beneficial When Learning Programming?
	Introduction
	The Difficulties of Learning Programming
	Potential Benefits of Embodied Interaction
	Embodied Interaction in Programming
	Important Factors for Embodied Environments for Learning Programming
	Nature of the Interaction
	Focus of the Interaction
	Collaboration
	Motivation

	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

