
Structural knowledge and language notational properties in program
comprehension

Pablo Romero and Benedict du Boulay
Human Centred Technology Group,

University of Sussex, Falmer, BN1 9QH, UK.
pablor@sussex.ac.uk

Abstract

Several accounts of program comprehension have taken
the theory of text comprehension by Kinstch as a starting
point to model the mental representations built when pro-
grammers understand a computer program. A crucial point
that these accounts try to explain is how these mental rep-
resentations are organised. According to Kintsch’s theory,
the mental representations built as a product of the text com-
prehension process are interrelated propositional networks
whose organisation is determined by the main idea of the
text. In program comprehension, this main idea has been
understood in terms of functionality. This paper contends
this notion, proposing that in program understanding pro-
grammer’s mental representations are multifaceted and or-
ganised through several criteria. Which of these is the most
important one depends on the programming language em-
ployed among other factors. The fact that functional infor-
mation appeared as crucial might have been because most
of the empirical research that has been undertaken has em-
ployed procedural languages. This claim is tested empiri-
cally by analysing the mental representations of program-
mers in Prolog, a declarative programming language. The
results support our claim by showing that in this case data
structure information is more important than function.

Keywords: knowledge representation, program debug-
ging, program comprehension.

1 The organisation of programmers’ mental
representations

There is a tradition in program comprehension studies to
regard this cognitive activity as similar to text comprehen-
sion. A number of studies have taken methods and theories
of text comprehension as a starting point to build models
of program comprehension [1, 14, 6, 5]. In particular, the
text comprehension theory developed by Kinstch [12, 11]

has inspired most of these models. One of the aspects of
program comprehension that has been frequently compared
to text comprehension is the mental representation that pro-
grammers are said to build of the programs they study. This
mental representation is said to be organised into a hierar-
chical structure which is dictated by the situation being de-
scribed by the text as well as by the reader’s general knowl-
edge about the state of affairs in the world [10, 12, 11]. This
hierarchical structure makes topic sentences of a paragraph
more salient or relevant for readers [11]. In program com-
prehension, this main idea of a paragraph has been equated
to the place in the code where the main function of the
program is made explicit [4, 17, 15, 5]. It is considered
that through experience, programmers develop the neces-
sary skills to detect these important places in the program.
However this research has considered procedural languages
mainly; it is not clear that this is true for languages belong-
ing to other paradigms.

Research that has considered procedural languages has
identified the most important places of the code as the fo-
cal elements of Programming Plans [15, 5]. Programming
Plans can be described as units of schematic stereotypi-
cal programming knowledge related to the program’s goals.
Studies that have taken into account languages belonging to
other programming paradigms sometimes have found Pro-
gramming Plans unable to explain some aspects of pro-
grammers’ knowledge [9, 2, 13]. It has been argued in [16]
that although Programming Plans might be important for
non-procedural languages, there might be other valid mod-
els for them. For a declarative language like Prolog, for
example, Prolog Schemas [7], a model related to data struc-
ture information, has been proposed as a plausible alter-
native [16]. These studies therefore suggest that although
programmers’ mental representations are hierarchically or-
ganised and some elements of this organisation are focal,
the criteria behind this hierarchical organisation might not
always be based on functional information. Programming
languages, as any other information structures, highlight
certain types of information but obscure some others [8].

The information type(s) highlighted seem to be the ones that
dictate the criteria for the hierarchical organisation of the
programmers’ mental representations. This suggests that
although program comprehension is similar to text compre-
hension in that mental representations are hierarchically or-
ganised and some elements of this organisation are focal,
in program understanding programmers’ mental represen-
tations are multifaceted and organised through several cri-
teria. Which of these is the most important one depends
on the programming language employed among other fac-
tors. The following section describes an empirical study
designed to test this hypothesis.

2 Comparing two structural models through
a debugging task in Prolog

In the empirical study reported in this section two groups
of programmers, novice and experienced Prolog users, per-
formed a debugging task on several Prolog programs each.
These programs were seeded with errors located in places
of the code i) considered as focal according to a Program-
ming Plans analysis (plan key errors), ii) considered as fo-
cal according to a Prolog Schemas analysis (Schema key
errors) and iii) somewhere else (non-key errors). The de-
tection time and accuracy of the two experimental groups
were compared to find out which kind of error was more
easily spotted by which group. The hypothesis proposed
above implies that, as Prolog highlights data structure infor-
mation [16], the mental representations of experienced Pro-
log programmers will be organised hierarchically accord-
ing to a data structure criterion. Therefore it is expected
that places of the code considered as focal according to a
data structure analysis will be more salient for experienced
programmers, and consequently deviations (errors) in these
segments would stand out more than deviations elsewhere.

2.1 Design

This experiment was a 2× 3 factor design with two in-
dependent variables (skill level and error category) and one
dependent variable (error detection accuracy). Skill level
was a between subjects variable and error category a within
subjects variable. The skill levels were novice and experi-
enced Prolog user and the error categories were Schema key
errors, Plan key errors and non-key errors.

2.2 Participants and Procedure

The participants of the experiment were 14 novice and 12
experienced Prolog programmers. The novice population
comprised undergraduate and postgraduate (MSc) students
who had taken a three month introductory course in Pro-
log and were either Computer Science and Artificial Intel-

ligence undergraduates or Artificial Intelligence master stu-
dents, all of them in the School of Cognitive and Comput-
ing Sciences in Sussex University. The Computer Science
and Artificial Intelligence curriculum normally includes the
teaching of one or two programming languages before Pro-
log, therefore, this novice population was inexperienced in
Prolog, but not in programming in general. They knew at
least another programming language already.

The experienced programmer population had on average
9.6 years of Prolog programming experience and had writ-
ten programs longer than one thousand lines (on average).
They were either lecturers or researchers at academic insti-
tutions and five of them had taught a Prolog course.

The experiment was a pen and paper exercise and the
subjects performed eight debugging sessions. In each one of
them, they debugged a different Prolog program. First they
had a period of time to read the program specification. Af-
ter this, they were presented with the program code. Their
task at this point was to verify that this code complied with
its specification. If this was not so, they had to mark any
possible problems, but not to correct them. They had up to
5 minutes to perform this task. Each program was seeded
with three errors, one Plan key, one Schema key and one
non-key. The order of presentation of these programs was
randomised.

2.3 Results

The statistical analysis compared debugging accuracy
(detection rates) through a repeated measures ANOVA for
skill level as between subjects condition and error category
as within subjects variable. The results of this analysis are
summarised in Figure 1. It can be seen that although experi-
enced subjects had a higher detection accuracy than novices
for every error category, Schema key errors stand out as
those for which this difference is the largest. There were
main effects for skill level, F(1,24) = 27.78,p < .01; and
for error category, F(2,48) = 7.86,p < .01. There was also
an interaction effect for these two factors, F(2,48) = 4.54,p
< .05. Tests of interaction effects contrasts were run com-
paring a) Schema vs. both Plan and non-key errors and b)
Plan vs. non-key errors. The only comparison with a signif-
icant difference was the first one, F(1,24) = 8.46,p < .05.
This result confirms the tendency shown in Figure 1 and
commented on above about the large difference between the
accuracy rates of experienced and novice subjects only for
the case of Prolog Schemas.

This results suggest that, at least for these experimen-
tal conditions, the mental representations of experienced
Prolog programmers, unlike those of novice users, display
a hierarchical organisation based on data structure. This
is different from research that has considered procedural
languages [4, 17, 15, 5] (which suggests an organisation

Figure 1. Error detection accuracy rate by
novices and experienced programmers.

() Plan key errors; () Schema key errors; ()
non-key errors.

of mental representations in terms of functional aspects)
and similar to research that has focused on Prolog [16].
This result supports the experimental hypothesis which sug-
gested that although program comprehension is similar to
text comprehension in that mental representations are hi-
erarchically organised and some elements of this organisa-
tion are focal, this hierarchical organisation is not always in
terms of function; the target programming language plays a
crucial role in determining the criteria for this organisation.
Taking into account this result together with other findings
in the area [3, 16], instead of a mental representation dic-
tated by only one structural model, the picture that emerges
here is of a multifaceted mental representation perhaps or-
ganised through several criteria. This finding is especially
important for programming languages other than procedu-
ral ones. It cannot be assumed, for example, that the men-
tal representations of programmers of Object Oriented pro-
gramming languages will be organised according to a func-
tional criterion. Research taking into account this sort of
languages has to be undertaken to determine which is the
case here.

This paper has described an empirical study designed
to test the hypothesis that programmers’ mental representa-
tions are multifaceted and can be organised through several
criteria and not just in terms of functional aspects. As the
target programming language is an important factor to es-
tablish this criteria more research which takes into account
non-procedural programming languages is needed in this
area.

References

[1] M. E. Atwood and H. R. Ramsey. Cognitive structures in the
comprehension and memory of computer programs: an in-
vestigation of computer program debugging. Technical Re-
port TR-78-A21, US Army Research Institute for the Be-
havioral and Social Sciences, Va: Alexandra, 1978.

[2] R. K. E. Bellamy and D. J. Gilmore. Programming plans:
Internal and external structures. In K. Gilhooly, M. T. G.
Keane, R. H. Logie, and G. Erdos, editors,Lines of thinking:
Reflections on the psychology of thought, Vol 1, pages 59–
71. Wiley, London, U.K., 1990.

[3] D. Bergantz and J. Hassell. Information relationships in
PROLOG programs: how do programmers comprehend
functionality? International Journal of Man-Machine Stud-
ies, 35:313–328, 1991.

[4] R. Brooks. Towards a theory of the comprehension of
computer programs.International Journal of Man-Machine
Studies, 18:543–554, 1983.

[5] S. P. Davies. Models and theories of programming strategy.
International Journal of Man-Machine Studies, 39:237–267,
1993.

[6] F. Détienne. Expert programming knowledge: a schema-
based approach. In J. Hoc, T. R. G. Green, R. Samurçay, and
D. J. Gilmore, editors,Psychology of Programming, pages
205–222. Academic Press, London, U.K., 1990.

[7] T. S. Gegg-Harrison. Learning Prolog in a schema-based
environment.Instructional Science, 20:173–192, 1991.

[8] D. J. Gilmore and T. R. G. Green. Comprehension and re-
call of miniature programs.International Journal of Man-
Machine Studies, 21(1):31–48, 1984.

[9] D. J. Gilmore and T. R. G. Green. Programming plans and
programming expertise.Quarterly Journal of Experimental
Psychology, 40A:423–442, 1988.

[10] W. Kintsch. On comprehending stories. In M. A. Just and
P. Carpenter, editors,Cognitive Processes in Comprehen-
sion, pages 33–61. Erlbaum, Hillsdale, NJ, 1977.

[11] W. Kintsch. Comprehension: a Paradigm for Cognition.
Cambridge University Press, Cambridge, U.K., 1998.

[12] W. Kintsch and T. A. van Dijk. Toward a model of
text comprehension and production.Psychological Review,
85(5):363–394, 1978.

[13] T. C. Ormerod and L. J. Ball. Does design strategy or pro-
gramming knowledge determine shift of focus in expert Pro-
log programming? InEmpirical Studies of Programmers,
fifth workshop, pages 162–186, Norwood, New Jersey, 1993.
Ablex.

[14] N. Pennington. Stimulus structures and mental representa-
tions in expert comprehension of computer programs.Cog-
nitive Psychology, 19:295–341, 1987.

[15] R. S. Rist. Schema creation in programming.Cognitive
Science, 13:389–414, 1989.

[16] P. Romero. Focal structures and information types in Prolog.
International Journal of Human Computer Studies, 54:211–
236, 2001.

[17] S. Wiedenbeck. Beacons in computer program compre-
hension. International Journal of Man-Machine Studies,
25:697–709, 1986.

