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Abstract

This document presents an overview of the program visualisations
additional to the program code provided by some of the most popular
object-oriented programming environments to support tasks involving
program comprehension. These representations were compared in terms
of the programming aspects they highlight and of their information
modality. Those with common characteristics according to these criteria
were identified. Finally, a brief analysis of these common representations
in terms of Green’s (1989) Cognitive Dimensions is presented.

Two questions arising from this survey are a) whether
representations additional to the code should be redundant and highlight
similar information to the main notation or be complementary and
highlight different programming aspects and b) which factors might
increase the cognitive difficulty of co-ordinating these additional
representations and the program code. More theoretical knowledge
about the way these additional representations influence the
comprehension of computer programs seems to be needed.

Keywords: external representations, program comprehension,
program visualisation

Introduction

Program comprehension is a skill that is central to programming. System

documentation, maintenance and debugging are important programming

activities for which program comprehension is an essential subtask. Even code
generation, with its current emphasis in re-use, normally comprises frequent
program comprehension episodes. Comprehension of computer programs is a
complex cognitive activity which could benefit from the appropriate tools,

both at the novice and experienced levels. One common approach to support



the program comprehension process is by complementing the program code
with other abstractions or visualisations of it. Novice and professional software
development environments often offer multiple visualisations of the program
code, each one normally highlighting a specific aspect of it. The use of
graphical interfaces has allowed these additional representations to increase
their graphical complexity. However, there is little theoretical understanding
about the way these multiple representations influence the comprehension of
computer programs.

Graphical abstractions seem to be a central feature of Object-Oriented
programming. The very name of this programming paradigm evokes
abstractions of a graphical nature, and indeed almost any Object-Oriented
programming environment provide the programmer with multiple abstractions
of the code. However, there does not seem to be a standard for the kinds of
representations employed as an aid to program comprehension related tasks.
The Unified Modelling Language (UML) (Booch, Rumbaugh, & Jacobson,
1998), for example, proposes several types of views of the program, but these
form part of a methodology for software design.

The purpose of the survey reported in this paper is to identify the types of
representations commonly used by Object-Oriented programming
environments to aid tasks involving program comprehension, to characterise
them both in terms of their graphical properties and of the programming
aspects highlighted by them and to offer an analysis of their notational
properties. This investigation is being undertaken within a project with the
more global aim of exploring the way multiple representations influence
computer programming. In particular, this project focuses on the issue of how
different factors affect the way users co-ordinate representations when
performing programming tasks. Some of the factors under consideration are:
the different programming aspects afforded by the representations, information
modality and individual differences such as cognitive style.

This paper is divided into four parts. The following section gives a overview of
external representations in general and in the programming area in particular,
and presents a summary of a framework to analyse their notational properties.
The next section offers a brief account of some of the most popular
Object-Oriented programming environments in terms of the types of
representations they use to support tasks involving program comprehension.
The subsequent sections analyse these types of representations in terms of the
programming aspects highlighted by them and their information modality and
also present a brief analysis of the notational properties of some of these
representations. The final part presents a summary and conclusions of this
survey.

2 External representations in programming

When trying to perform a programming activity in everyday settings,
programmers normally work with other external representations as well as the
program code. Some of these external representations occur in debugging



packages, prototyping and visualisation tools in software development
environments, or are included as part of internal and external documentation.
Therefore, programming normally requires working with multiple
representations.

Two important aspects to consider when using multiple representations are
the issue of sentential versus graphical representations and the different
programming aspects implicit in programs. The first aspect, information
modality, refers to the characteristics, advantages and disadvantages of
representations which are basically propositional and those that are mainly
diagrammatic. It is not clear whether, for example, including a high degree of
graphicality in the code visualisations has potential benefits for performing the
programming task.

The second aspect refers to the different programming perspectives highlighted
by the visualisations. Computer programs are information structures that
comprise different types of information, and programming notations usually
highlight some of these perspectives at the cost of obscuring others. It is an
open issue whether, for example, abstractions that highlight information types
different to the program code will be more beneficial to programmers than
those that highlight the same ones.

A descriptive account of these two aspects would not be very useful on its
own. However, because of the exploratory nature of the survey reported here,
a formal analysis of their merits would be outside the scope of this
investigation. The best alternative seems to be to perform an analysis of the
notational properties of the program visualisations in terms of a framework
like Cognitive Dimensions (Green, 1989).

The next subsections offer a brief account of the relevant characteristics of
information modality and programming perspective and of the Cognitive
Dimensions framework.

2.1 Information modality

Information modality refers to the particular form of expression that is used to
present information. A typical distinction here is between propositional and
diagrammatic representations, although these two terms can be thought of as
situated at the extremes of a continuum containing representations with
different degrees of ‘graphicality’ (Cheng, Lowe, & Scaife, 1999). Program
code, for example, cannot be regarded as fully propositional, because it uses
location conventions to enhance its comprehension (there is normally a
line-per-instruction format and it makes extensive use of indentation). In the
taxonomy of graphic languages developed by Twyman (1979), program code
would not be an example of pure linear text but a hybrid category of text
between a list and a linear branching configuration.

Representations of differing modality are a common case of multiple external
representations that support complementary processes (Ainsworth, 1999). For
example, diagrams, unlike propositional representations, exploit perceptual



processes by grouping relevant information together and therefore make the
search and recognition of information easier. Another difference between
propositional and diagrammatic representations is that the former permit the
expression of abstraction or indeterminacy while the latter compel the
representation of specific information (Stenning & Oberlander, 1995). This
specificity of graphical representations allows some inferences to be more
tractable.

Although programmers normally have to coordinate representations of
different modalities, there has not been much research on these issues in the
area of programming. One of the few examples here is the GIL

system (Merrill, Reiser, Beekelaar, & Hamid, 1992), which attempts to provide
reasoning-congruent visual representations in the form of control-flow diagrams
to aid the generation and comprehension of LISP, a textual programming
language. Merrill et al. claim that this system is successful in teaching novices
to program in this language; however, their work did not relate their results to
issues like information modality and programming perspective.

Other studies in the area have been concerned with issues related to the
format of the output of debugging packages (Patel, du Boulay, & Taylor, 1997;
Mulholland, 1997). Those studies have offered conflicting results about the
co-ordination of representations of different modalities. Patel et al. (1997)
found similar performance for subjects working with representations of the
same and different modalities while Mulholland (1997) reported poor
performance for those working with different modalities. In both cases,
participants worked with the program code and with the debugger’s output.
The debugger notations used by both of these studies were mostly textual.
The only predominantly graphical debugging tool used by these studies was
TPM (Eisenstadt, Brayshaw, & Paine, 1991). While the performance of Patel
et al.’s participants was similar for the textual debuggers and TPM, the
subjects of Mulholland’s study found working with TPM more difficult. One
important difference between these two studies is that while the former used
static representations, the later employed a visualisation package and therefore
dynamic representations. However, other factors might be playing a role in
these conflicting results. First, it is not clear that the graphical debugger
(TPM) displayed a similar amount of information to its textual counterparts.
Other important factors that Patel et al. (1997) identified are the choice of
experimental materials (the programs employed in the experiments) and the
degree to which the information required for the experimental task is hidden
or implicit in the additional representation. An important issue is the degree
to which the above work on LISP and Prolog generalises to Object-Oriented
languages.

2.2 Programming perspective

Programming perspective refers to the different ‘views’ that can be adopted to
look at a domain. In programming it has been established that programs can

be looked at from different perspectives (Pennington, 1987b); and experienced
programmers, when comprehending code, are able to develop a mental



representation that comprises these different perspectives or information types,
as well as rich mappings between them (Pennington, 1987a; Ormerod & Ball,
1993). This characteristic is similar to what has been found in general problem
solving, where the ability to build several perspectives of a domain and to
switch between them during problem solving as a means to cope with
complexity is directly related to domain expertise (Nix & Spiro, 1990).

Some of the different programming perspectives are: function, structure,
operations, data-flow and control-flow. Function refers to what the program
does, structure to the programming language objects that are used in order to
implement a solution to the programming problem and operations concern the
individual statements in a program which carry out low-level actions.
Data-flow concerns the transformations which data elements undergo as they
are processed and control-flow refers to the sequence of actions that will occur
when the program is executed.

Although programs comprise several information types, according to the
match-mismatch hypothesis (Gilmore & Green, 1984), notations (in this case
programs) highlight some of them and obscure some others. In procedural
languages, for example, it is relatively easy to detect control-flow information,
and relatively difficult to access function relations (Pennington, 1987b;
Corritore & Wiedenbeck, 1991). For different programming languages the
information types highlighted and obscured are different. For Prolog, a
declarative programming language, 1t is data structure information which is
accessible (Bergantz & Hassell, 1991; Romero, 2001), while according

to Wiedenbeck and Ramalingam (1999), novices of C++ working with small
programs tend to develop a mental representation strong in function-related
knowledge, but have problems detecting operations and control-flow
information.

From this point of view, 1t makes sense to reinforce or complement the
information comprised in the program code with additional representations.
Two issues to consider here are the number of these additional representations
and whether they are redundant or complementary to the program code.
There has to be a balance between a representation highlighting as few
information types as possible, so as to keep 1t simple for easy information
extraction, and presenting the programmer with only a few additional
representations, so that problems of representation co-ordination do not over
complicate the task. Regarding the issue of information redundancy, it is not
clear whether representations that highlight different information types to the
program code have any advantage over those that highlight similar ones.

2.3 The Cognitive Dimensions framework

According to Green (1999), Cognitive Dimensions is a framework that can be
applied to the analysis of the notational design of all information artefacts,
from computer languages to mobile telephones. It contains three important
components: dimensions, activity types and environment. Cognitive
Dimensions are descriptors that refer to usability properties of an information
structure. For example, five relevant dimensions are closeness of mapping,



role-expressiveness, hard mental operations, diffuseness/terseness and hidden
dependencies. Closeness of mapping refers to how ‘far’ an external
representation is from its internal counterpart, or how direct the mapping is
from what is in the head of the user to what is in the system. Of course the
difficulty here is to know what is in the head of the user. In programming, for
example, some proponents of the Plan model (Soloway & Ehrlich, 1984; Rist,
1986, 1989; Détienne, 1990) consider that languages in which Plan information
can be easily expressed would be superior because programmers would find it
easier to map their solutions to a program. In this case, it could be said, at
least following the Plans-in-the-head assumption, that such a programming
language would have a good closeness of mapping.

Role expressiveness means how easy it is to assemble and de-assemble cognitive
structures into a notation. For program comprehension, this descriptor means
how easy it is to detect meaningful structures or chunks and also how easy it is
to establish relations among them; or in other words, how ‘hard’ it is to break
down a program into its primitive components. Sometimes, the role
expressiveness of a system can be improved by adopting an informal,
secondary notation. An example of this would be the convention of writing all
the syntactic key words in a programming language in upper-case letters.

Hard mental operations refers to how much cognitive load the information
artifact imposes. If, for example, users need to resort to fingers and pencil
annotations at some points to keep track of what is happening then it is
possible that the information artifact imposes hard mental operations.

Some notations use a lot of symbols to achieve the results that others can
accomplish more compactly. The diffuseness/terseness dimension refers to this.
This dimension has been a common point of comparison for computer
languages. Cobol is well known for its verboseness, while some other languages
like Basic or Prolog are more compact. Green and Petre (1996) argue that a
high degree of diffuseness means more cognitive effort on users, but
over-terseness could, on the other hand, make different instances of artifacts
more similar and therefore increase the difficulty to discriminate between them.

Finally, hidden dependencies refers to the visibility of the dependencies
between components in a notational system. Green uses the example of
spreadsheets to illustrate this point. According to him, spreadsheets exhibit a
high degree of hidden dependencies. For example, when changing the contents
of a cell in a spreadsheet application it is not obvious which other cells will be
affected.

The second element of the cognitive dimension framework, activity types,
refers to a classification of the types of tasks that can be performed with an
information artefact. Activity types are an important element of the
framework because the descriptors cannot be analysed in the abstract. It
might be the case that a notational system has a good evaluation for a
descriptor for a specific activity but not for another. There are four activity
types: incrementation, transcription, modification and exploratory design.
Incrementation refers to tasks that have to do with adding a new element in
the notational system, for example, adding a new address to an address book.



Transcription means transferring a piece of information from another
notational system to our target information artefact. For example, converting
a formula into spreadsheet terms. Modification means changing something in
the notational system’s application, like modifying a program to solve a
different problem or changing the phone area codes in an address book.
Finally, exploratory design activities are characterised by an uncertainty about
the final outcome of the task, this final outcome has to be discovered while
performing the activity.

Very often information artefacts are abstract notational systems that need a
working environment. For example, programming languages are an abstract
notion; people need editors or some other kind of working environment to
program. In this way, it has to be remembered that claims about a system are
made assuming a particular environment. Using a different environment very
often changes the notational properties of the system.

3 External representations in some of the most
popular programming environments

This section presents a brief review of some of the most popular
object-oriented programming environments and the types of representations
they use to support tasks involving program comprehension. The section is
divided into those environments whose purpose is to support the whole
programming activity (proper development environments), those that are
mainly code visualisation tools, learning environments and visual languages.
Development environments provide representations in addition to the program
code mainly for debugging purposes, while visualisation tools and learning
environments provide them mainly for general program comprehension.

The development environments considered are: Microsoft’s Visual J++,
Borland’s JBuilder, IBM’s Visual Age and Code Warrior. The visualisation
tools considered are: IBM’s JaViz and Jinsight, VisiComp and CodeVizor.
The learning environments taken into account are Blue] and Cocoa. Finally,
the only example of a visual programming language considered is Prograph.
As the motivation of this survey was to 1dentify the types of representations
commonly used by Object-Oriented programming environments to aid program
comprehension related tasks, the main criteria to select these particular
programming environments is that they were widely used. The only cases for
which it is not clear that this criteria is met was for the learning environments;
however, this is normally a difficult point to assess for this type of systems.

Table 1 presents a summary of some of the characteristics considered for this
review. This table presents the four development packages, four visualisation
tools, two learning environments and one example of a visual language referred
to above. Some of these programming environments can display more than one
representation window (e.g. Jinsight). All the development packages can
display information in several other windows, however, this review focuses only
on their debugger browsers. The modality of the representation refers to



Type of tool System Type of | Information Information Programming
representation | modality type concepts
highlighted represented
Development || Visual J+4 | Debugger Propositional Function, Threads,
package browser Control-flow, methods, ob-
Data structure | jects, variables
Visual Age | Debugger Propositional Function, Threads,
browser Control-flow, methods, ob-
Data structure | jects, variables
JBuilder Debugger Propositional Function, Threads,
browser Control-flow, methods, ob-
Data structure | jects, variables
Code Debugger Propositional Function, Threads,
Warrior browser Control-flow, methods, ob-
Data structure | jects, variables
Visualisation || JaViz Tree and | Diagrammatic, | Control-flow Methods
tool node in- | propositional
formation
windows
Jinsight Execution, Table, dia- | Data struc- | Methods,
table, call | grammatic, ture, control- | objects
tree, object | histogram flow
histogram
and method
histogram
view
Code Vizor | Class hierar- | Diagrammatic | Data structure | Classes
chy view
VisiComp Objects view | Diagrammatic | Data structure | Objects
Learning Bluel Objects and | Diagrammatic | Data structure | Classes,
environment classes view objects
Cocoa Simulation Diagrammatic | Data Objects
view structure,
condition-
action
Visual Prograph Visual code | Diagrammatic | Data-flow Variables,
language editor methods

Table 1: Summary table of the reviewed representations
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Figure 1: Sample debugging interaction window in Visual J++.

whether the information is presented in a textual, graphical or tabular form.
Information type highlighted refers to the different information types
comprised and highlighted by the representation (Pennington, 1987b). The
information types taken into account here are function, data-flow, control-flow,
data-structure and condition-action. Finally, programming concepts
represented refers to the object-oriented concepts conveyed in the
representations.

This is not a review of programming environments, but of the representations
they provide. Therefore, this survey focuses on the representations that these
environments use in order to support program understanding rather than on
the whole system. The functionality of these systems is described and
discussed only in relation to these representations.

3.1 Development environments

Development environments provide external representations mostly to support
the debugging process. Although some of their names could imply that they
support visual programming, this is mostly true only for building the layout of
the user interface. Also, the representations used for debugging purposes are
mostly textual rather than graphical.

3.1.1 Visual J4++

Microsoft’s Visual J++ is a Windows-hosted development tool for Java
programming (http://msdn.microsoft.com/visualj/). Tts debugger comprises



Debugger Information Programming

window type concepts
highlighted represented

Autos Data structure | Variables

window

Locals Data structure | Variables

window

Immediate Function, Methods, ob-

window Data structure | jects, variables

Call stack || Control-flow Methods

window

Threads Control-flow Threads

window

Watch Data structure | Variables

window

Output Compiler error

window messages

Table 2: Summary table for Visual J4++

two windows (apart from the code window). They display information about
local variables, the call stack, the threads, the value of specific variables and
the program’s output (errors and exceptions for example). Figure 1 shows an
example of these windows in a debugging session. The bottom left window
shows the call stack, while the bottom right window shows the variables that
have been selected for watching. The code window shows the line currently
being executed with an arrow which appears at the right hand side of it. At
the bottom of the window showing the call stack there is a selection bar in
which users can click to select different views. The autos window displays the
values of all variables within the scope of currently executing methods. The
locals window displays the local variables and their values for each method in
the current stack frame. The difference between these two windows is that the
former displays only the variables of the current method, but for all the live
threads. This allows the programmer to be aware of the impact that code
executing in different threads might have upon variables. In the immediate
window users can evaluate any expression, variable, or object and see the value
that is returned. The call stack window displays a list of all active procedures
or stack frames for the current thread of execution. Active procedures are the
uncompleted procedures in a process. Finally, the threads window enables
users to change the current thread of execution or view the threads in any
attached process.

At the bottom of the window showing the variables selected to be watched
there 1s another selection bar which contains two display options. The watch
option is the one currently being displayed in Figure 1. The output window
displays messages generated by the compiler and the output resulting from
debugging instructions that users place in their code. Table 2 shows a
summary of the properties of the different windows comprised in this debugger
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Figure 2: Sample debugging interaction window in Visual Age.

browser. This table does not show the information modality dimension
because all of the debugger windows present propositional representations.

The main way of interacting with these windows is selecting the desired view
by clicking on their selection bars. Also, by selecting the ‘immediate’ view in
the bottom left window the user can enter code and have it interpreted
according to the current state of the program.

3.1.2 Visual Age

Visual Age is IBM’s software development environment
(http://www-4.ibm.com/software/ad/vajava/). Tts debugger displays four
windows: the all programs/threads window, the variables window, the value
window and the code window. The all programs/threads window displays the
thread being debugged, and below this thread there is a list of methods
representing the current stack. The variables window shows the variables local
to the method selected in the all programs/threads window. The value window
displays the value of the variable selected in the vartables window. The code
window shows the line of source currently executing by highlighting it.

Figure 2 shows an example of a debugging session in Visual Age.
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Debugger Information Programming
window type concepts
highlighted represented
All pro- || Control-flow Threads,
grams/threads| methods
window
Variables Data structure | Objects,
window variables
Values Data structure | variable values
window

Table 3:

Summary table for Visual Age debugger browser windows

By clicking on a method of a current thread (in the all programs/threads
window), the variables window displays the variables associated with that
method. The variables’ elements can be expanded/contracted by clicking at
the left hand side of them. Also, by clicking on a specific variable of this
window, its value is displayed in the value window. Table 3 shows a summary
of the properties of the different windows comprised in this debugger browser.
As in the table in the previous section, this table does not show the
information modality dimension because all of the debugger windows employ
propositional representations.

3.1.3 JBuilder

The debugger in Borland’s JBuilder provides a wide range of information
(http://www.borland.com/jbuilder/). When debugging, the display is divided
into two parts: the application browser and the debugger browser. In Figure 4,
the application browser is displayed at the top of the screen, while the
debugger browser appears at the bottom. The application browser comprises
three windows: the project, the class hierarchy and the code windows. The
project window shows the files associated with the current project, the class
hierarchy window displays the static class relationships of the current object
and the code window shows the code of the method currently being executed.
The highlighted line in the code window is the line of the source code being
executed at that moment.

The debugger browser has four parts: the views window, the toolbar, the
status bar and the session tabs. The views are the main part of the debugger
browser. There are six views and they can be displayed all at once as floating
windows: the console, the classes with tracing disabled, the breakpoints, the
threads, the data watch and the loaded classes view. The console view displays
output and errors from the program being executed and also allows users to
input data to it. The classes with tracing disabled view lists classes and
packages the debugger will not step into. The breakpoints view gives a list of
all the breakpoints set and provides commands for updating them. The
threads view displays the current status of all threads in the program. Each
thread group expands to show a list of its threads and current method call

12
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Figure 3: Sample debugging interaction window in JBuilder.

Debugger Information Programming
view type concepts
highlighted represented

Console out- || Function Program input

put,  input and output

and errors

Classes Data structure | Classes

with tracing

disabled

Data Data struc- | Methods, ob-

and code || ture, control- | jects, variables

breakpoints flow

Threads, call || Data struc- | Methods, ob-

stack and || ture, control- | jects, variables

data flow

Data watches || Data structure | Objects,
variables

Loaded Data structure | Classes,

classes  and packages

static data

Table 4: Summary table for JBuilder
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Figure 4: Sample debugging interaction window in Code Warrior.

Debugger Information Programming
window type concepts
highlighted represented

Call stack

Control-flow

Threads,

window methods
Variables Data structure | Objects,
window variables
Watch Data structure | Objects,
window variables

Table 5: Summary table for Code Warrior debugger browser windows

sequence. Data associated with the current thread is shown at the right side of
this window. The data waich view displays the current values of data elements

that have been selected. Finally, the loaded classes view shows the classes

currently loaded by the program. Each class can be expanded to show static

data belonging to it. Table 4 shows a summary of the properties of the

different views comprised in this debugger browser. As in the summary tables
for the other two debugger browsers presented, this table does not show the
information modality dimension because all the debugger windows employ
propositional representations.

3.1.4 Code Warrior

Code Warrior’s debugging browser displays standard debugging information

(http://www.codewarrior.com/). As shown in Figure 4, Code Warrior’s
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Figure 5: Sample visualisation in the JaViz tool set.

debugger has a window to display the call stack, another for its current
variables and yet another for the program’s source. The call stack window
shows the associated methods. By clicking on a particular methods, its
associated variables are displayed in the variables window. Each variable can
be expanded by clicking on it into a floating window which shows its structure
and values. The line of code currently under execution is marked by an arrow.
Table 5 shows a summary of the properties of the different windows comprised
in this debugger browser. Again, this table does not show the information
modality dimension because all of the debugger windows employ propositional
representations only.

3.2 Visualisation tools

Unlike debugging browsers within software development environments,
visualisation tools use graphical as well as textual representations to provide
support for program understanding. Four visualisation tools will be briefly
described here, again in terms of the representations they use: IBM’s JaViz
and Jinsight, CodeVizor and VisiComp.
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Visualisation || Information Information Programming

type modality type concepts
highlighted represented

Execution Table, Control-flow Methods

view diagrammatic

Table view Table Control-flow Methods

Call tree || Table, Control-flow Methods

view diagrammatic

Object  his- || Table, Data structure | Objects

togram view || histogram

Method his- || Table, Control-flow Methods

togram view || histogram

Table 6: Summary table for Jinsight

3.2.1 JaViz

IBM’s JaViz (Kazi, Jose, Ben-Hamida, Hescott, Kwok, Konstan, Lilja, & Yew,
2000) is a visual analysis tool that supports performance tuning for large scale
distributed Java application programs. JaViz displays the execution of a
program graphically as a tree with detailed node information (see Figure 5).
The nodes of this tree are the methods that the application has to execute.
The JaViz display comprises two windows: the {ree window and the node
information window. The tree window displays the graphic representation of
the execution tree. Through the tree menu option, the user can select to ‘hide’
or ‘expand’ nodes of this tree so as to obtain the desired level of granularity, to
zoom in or out a selected area and to find a node instance that matches
specified criteria. The node information window displays data about the
currently selected node. This information includes its name, the name of its
caller, the name of the machine executing it, an identifier for the thread it
belongs to and additional statistical information about it. Examples of this
statistical information are: the total time the current method took to execute
over all its invocations in the program, the minimum, maximum and average
time this method took to execute over all its invocations and the total
execution time of this method instance. Some of its functionality includes the
ability to find a node that matches a set of given parameters, setting specific
style features to a group of nodes (like color, shape or size of nodes), zoom and
expand tree nodes.

3.2.2 Jinsight

IBM’s Jinsight is one of the most complete visualisation tools in the market
(http://www.research.ibm.com/jinsight/). Tt is aimed at professional
programmers who want to perform code tuning in terms of performance. It
allows programmers to visualise the program according to several views: the
ezecution, table, call tree, object histogram and method histogram view. Table 6
shows a summary of the properties of the different views comprised in this
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Figure 6: An example of the ezecution view in Jinsight.

visualisation tool.

Figure 6 shows an example of the ezecution view. This view shows an
overview and details of communications among objects per thread as a
function of time. Within each thread, an object is represented by a vertical
stripe coloured according to the object’s class. Time progresses downward in
the view (time labels are displayed at the right side of the view). The top edge
of a stripe coincides with the time when the particular method it represents
was called, and its height represents its total execution time. Zooming into
this view enables users to see the name of each method as well as its
arguments and return type. By default, the leftmost column is reserved for
garbage collection information.

Figure 7 shows an example of the fable view. This view shows measures of
execution activity and memory for threads, packages, classes, methods or
objects. In Figure 7, the cumulative processing time spent by each method is
shown along with their total number of calls. The measures of execution
activity and memory that can be displayed vary according to whether the
table is showing threads, packages, classes, methods or objects. For classes, for
example, other such measures are package name, instance size, number of
methods called, number of instances created and number of live instances.

Figure 8 shows an example of the call tree view. This view displays method
invocations as call tree paths. The nesting of method calls is shown
graphically as parent nodes ‘owning’ child nodes. For each method, its
contribution to the cumulative execution time as well as the number of times
it has been called are shown to the right side of the screen.

Figure 9 shows an example of the object histogram view. This view displays
object instances grouped by class, indicating their level of activity and
dependencies. The name of the object appears in the leftmost column, and to
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Figure 9: An example of the object histogram view in Jinsight.

its right there is a diamond shape and several rectangles. The diamond shape
represents the class object for a given class, while each of the rectangles to its
right denotes an instance of that object. The color of the rectangle denotes the
level of activity of the particular instance, light coloured rectangles are those
with a low number of calls, while dark ones denote high number of calls.
White rectangles represent objects that have been garbage collected. On
clicking on an object additional information about it can be accessed (who
calls it, who has created it, etc).

Figure 10 shows an example of the method histogram view. This view shows
methods grouped by class indicating their level of activity. Each rectangle to
the right of a class name represents a method. Similarly, in the object
histogram case, the colour of this rectangle is related to the method’s level of
activity. Light colours represent a low amount of processing time dedicated to
this method, while dark colours mean the method has been assigned high
amounts of processing time. Methods associated with darker colours can be
considered as candidates for optimisation, as they consume the most time.
Additional information about a specific method (such as its callers or the
methods which in turn it calls) can be accessed by clicking on it.

There is a wide range of functions for manipulating the representations
presented by this visualisation tool. A summary of these follows.

Within the execution, object histogram and method histogram views, selecting
a rectangular area of the display (by dragging the mouse) causes the tool to
zoom and display only this rectangular area on the whole display. Also, when
passing the mouse pointer over an entity of these views, a tooltip window will
display more detailed information about this entity. In the case of the object
histogram view, for example, the additional information will be about the
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Figure 10: An example of the method histogram view in Jinsight.

object’s class and instance identifier, its time of creation, cumulative time
spent 1n its methods and so forth.

Within any view, selecting an area of it and using the options of the selected
menu allows users to switch to other views but focusing on this selected part
of the data.

3.2.3 CodeVizor

CodeVizor is a tool for printing class hierarchies (http://www.codevizor.com/).
The main feature of this tool is its ability to produce static information about
the class hierarchies of an application (see Figure 11), even from .zip or .jar
class files. CodeVizor’s editor divides the screen into two areas. The window
to the left (the global window) shows all the classes involved in a project. By
clicking on any of the classes in this window, a window to the right (the local
window) displays only the selected class and those related to it. Each of these
windows can present different views of the project. By clicking on the bottom
bar icons, the user can switch between several views of the data. In the case of
the global window, these views are the derivation, hierarchy, package and file
view. In the local window these views are the diagram and source view. The
derivation view provides a bottom-up (child-to-parent) view showing what
classes a particular class i1s derived from. The hierarchy view provides a
top-down (parent-to-child) view showing what classes are derived from a
particular class. The package view depicts a project’s packages and the classes
they contain. The file view shows the files in the project and the classes they
contain. The diagram view renders diagrams of a project’s class hierarchy
(top-down) or class derivations (bottom-up). Finally, the source view provides
a read-only view of the source code using colour syntax highlighting.
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Figure 11: Sample visualisation in CodeVizor.

Note that this tool does not allow users to execute the application program, it
only visualises static information about its class hierarchies.

3.2.4 VisiComp

VisiComp is a visualisation tool that dynamically displays the data structures
built by the program (http://www.visicomp.com/product/index.html). As
seen in Figure 12, its visualisation window is divided into two areas; the area
to the right displays the overview of the data structure, while the left side
shows a portion of it in greater detail. The portion to show is selected by
clicking on the desired part of the overview area. The toolbar at the top of
these two areas enables users to zoom in or out of the selected area, to
customise the visualisation window to show these two areas as top and
bottom, or to show only one on the whole screen. This toolbar also controls
the execution of the program, allowing the user to step trace, stop or execute
it in ‘slow motion’. The main limitation of this tool is the fact that it only
supports one view of the program.

3.3 Learning environments

Tutoring environments employ external representations mostly as a way to
graphically show the behaviour of the program. The assumption here seems to
be that graphical external representations, by allowing some inferences to be
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Environment || Information Information Programming
window modality type concepts
highlighted represented

Classes Diagrammatic | Data structure | Classes
window
Objects Diagrammatic | Data structure | Objects
window

Table 7: Summary table for BlueJ windows

more tractable (Stenning & Oberlander, 1995), are more suitable for teaching
purposes and therefore the term ‘tutoring environment’ normally implies a
graphical environment.

3.3.1 BluelJ

Bluel is a Java tutoring environment built by the School of Network
Computing at Monash University, Australia (Kolling, 2000). Like CodeVizor,
BlueJ graphically displays the static class hierarchy built by the program.
However, through BluelJ the user can interact with the static data structure
representation to create associated objects and execute their methods. By
clicking on one of the non-abstract class icons, BlueJ presents a menu that
allows the user to perform several functions, such as to create objects of that
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class, edit the class implementation or compile it even before the application
program has been created. The generated objects are displayed in the
project’s bottom window (see Figure 13). As with class icons, by clicking on
object 1cons the user can execute their public operations or to inspect their
variables’ current values. In this way, the tool supports students by showing
them how their created classes build dynamic data structures and how these
change when their methods are executed. In particular, by displaying the
static data structure hierarchy separated from the objects dynamically
created, it stresses the difference between these two concepts. The editing of
the classes’ implementation is done by conventional methods (with a text
editor) and the debugging module of this tool is similar to those described
earlier. In this way, Bluel is a visualisation tool in which students can
evaluate expressions involving classes or objects in a graphical, interactive way.
Table 7 shows a summary of the properties of the two views comprised in this
learning environment.

3.3.2 Cocoa

Cocoa is a programming tutoring environment for children
(http://cocoa.apple.com/cocoa/). Cocoa can run simulations on worlds
designed by the programmer. A world is basically a set of board pieces and
rules that dictate the behaviour of the pieces. When the world is run, all the
pieces which have rules and are on the board get a chance to try their rules at
every clock tick. Cocoa allows the programmer to draw pieces and then to

23



2 Flla Edt Py Baand - Pl Soceansicn S0Un0 Wisdir Ha

Mon k12 pm 3k g Cecoo™ DRI P

B b0 Frmreriaie, v s et e

it Il &

P B v e vt

&

| P Varisbies.

Figure 14: Sample execution in the Cocoa learning environment.

Environment || Information Information Programming

window modality type concepts
highlighted represented

World Diagrammatic | Data structure | Objects

window

World vari- || Diagrammatic | Data structure | Variables

ables window

Rules Diagrammatic | Condition- Code of rules

window action

Table 8: Summary table for the windows in Cocoa
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define their rules of behaviour in a graphical way. As shown in Figure 14, the
Cocoa interface comprises several windows. The main window is the world
window. It is in this area where the simulation or execution of a world takes
place (the upper left window in Figure 14). Below this window there is a tool
bar that enables users to draw board pieces, specify their behaviour rules,
execute, execute in slow motion, step trace or stop the simulation. Below the
main window and its tool bar there is the world variables window. This
window contains the simulation’s variables with their current values. When
the simulation is not in execution, by clicking on any of the board pieces a
window which enables users to edit its rules appears (the long window at the
right in Figure 14). Each rule is represented as a condition action statement in
which the antecedent depicts the initial state of the piece on the board and the
consequent shows the state of this piece once the rule 1s applied.

Table 8 shows a summary of the properties of the different views comprised in
this learning environment. Cocoa is similar to Bluel in that users only have to
define the behaviour of the board pieces (classes in BlueJ), and then they can
create instances of these pieces (objects) and execute the world (their
methods).

3.4 Visual languages

Visual programming languages do not employ graphical representations as an
alternative to propositional code but use diagrammatic representations as the
program source. As in the case of learning environments, the assumption is
that graphical representations are better to encode programs. The empirical
evidence, however, does not always support this assumption (Green, Petre, &

Bellamy, 1991).

3.4.1 Prograph

Prograph is an object-oriented, visual, data-flow programming language for
electronics design which has been commercially successful
(http://www.pictorius.com/prograph.html). Tts visual code editor, illustrated
in Figure 15, supports the definition of methods. Each method can be defined
in a separate window, and within each definition, its parameters appear at the
top of the method’s window, while i1ts outputs are the variables at the bottom
of 1t. Lines join these variables with the built in operators or with the nested
methods (shown as icons) that process them. These nested methods’ icons
accept parameters at the top and produce output variables at the bottom. A
double click in a non-primitive icon opens their method window in turn. In
this way, data objects are carried from top to bottom of the screen,
highlighting a data-flow perspective of the program.
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4 An analysis of the reviewed representations

This section offers an analysis of the code visualisations reviewed in the
previous one. First, these representations are analysed in terms of their
programming perspective and information modality. Next, the common
characteristics and formalisms within these representations are identified and
described. Finally, an analysis of these common formalisms in terms of Green’s
(1989) Cognitive Dimensions is presented.

4.1 Information types and modality

This section analyses the representations of the programming environments
described above in terms of the information types highlighted by them and
their information modality. The information types considered will be similar
to those defined by Pennington (1987b): function, data-flow, control-flow,
condition action and data structure. Function refers to what the program
does. Data-flow concerns the transformations which data elements undergo as
they are processed. Control-flow refers to the sequence of actions that will
occur when the program is executed. Condition-action is information about
the events that will result when a set of conditions is true. Finally, data
structure relations are those that concern the type and number of program
objects that are transformed during the course of program execution. In the
Object-Oriented paradigm a distinction has to be made between static and
dynamic data structure relations. Descriptions at the level of classes and
subclasses are of the ‘static’ type. Normally, these relationships will not
change during the execution of the program. On the other hand, descriptions
at the level of objects and their variables are considered as ‘dynamic’ because
they are dictated by the execution of the program.

The difference between data-flow and data structure some times is not clear.
They both refer to data, but data structure refers to the hierarchical relations
that a piece of data establishes within and outside itself, while data-flow
stresses the path or ‘threading’ that a piece of data travels as the program
executes.

Generally speaking, a representation highlights some information types, but
this does not mean that other information types are not present or cannot be
derived from it. The rest of this section discusses each of the information types
considered in terms of the particular representations that highlight them.

It is interesting to note that all the debugging browsers within the
development environments considered here employ representations which are
mainly propositional. The reasons for this are not clear, although execution
efficiency and consideration of the display area as a limited resource might
explain this decision. On the other hand, the visualisation and tutoring
environments considered employ mostly graphical representations. An
example of a system that combines representations of different modality is
Jinsight. This system employs representations with different degrees of
‘graphicality’ which also sometimes include tabular components.

27



4.1.1 Function

Program execution is the main source of information about function. The
problem is that sometimes this is not fine grained enough for programmers to
understand/debug programs. A fine degree of granularity is offered by
debugging tools that allow programmers to run the program in a line by line
fashion. In graphical applications, for example, if there is a window showing
the execution of the program, the programmer can see the impact of every line
of code on the behaviour of the application. Another source of functional
information is the ‘output’ window that debugging tools sometimes offer, for
example Visual J+4 and JBuilder which display error messages and
exceptions. This information is displayed in a textual form.

In Object-Oriented languages, and especially for certain applications,
functional information can be easily accessible from data structure accounts.
Systems like VisiComp and Bluel, for example, assume that by showing data
structure information (classes, objects and their variables executing their
methods), users will be able to infer the program’s function. Although this
might be possible for the examples presented (small programs dealing with
database information about staff and students in a university, for example),
there might be other kinds of applications for which this is not so.

Simulation systems like Cocoa seem to be situated at the extreme where data
structure and function information are almost equivalent. In Cocoa, the
simulation presented when the world is being executed can be considered
either as a functional or as a data structure representation.

4.1.2 Data-flow

Data-flow focuses on the dynamical aspect of the ‘threading’ of data objects
through the execution of the program. The only programming environment
with representations that highlight data-flow is Prograph (see Section 3.4.1).
The ‘path’ that data objects traverse as the program (method) executes is
shown by the lines joining variables with nested methods. Data objects ‘travel’
from top to bottom of the window, and in this way, nested methods receive
their input variables at the top and produce their output data at the bottom.

4.1.3 Control-flow

The main source of propositional control-flow information are the threads and
call stack windows in all the debugging browsers presented. These windows
present a list of threads/methods that, similarly to the complex variables in
the watch window, can be expanded to show their associated methods (the
methods they call as part of the execution of the program). The tree window
in JaViz and the call tree view in Jinsight (Figures 5 and 8 respectively) are
examples of graphical representations highlighting this information type. In
both cases control-flow information is presented as a tree whose nodes are the
methods executed and its hierarchical relation is determined by the program’s
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Figure 16: Zoomed view of control-flow information in the execution view in
Jinsight.

calling sequence. A good summary of this information, which displays the
concurrent nature of threads is given in the execution view in Jinsight

(Figure 6). By clicking on a certain area of this view, a more granular account
of the control-flow information of this area can be shown (see Figure 16). This
view represents an alternative to the threads and call stack windows in the
debugging browsers or the call tree diagram in JaViz and Jinsight. However,
Jinsight’s execution view highlights control-flow information but as a function
of time and stressing the concurrent nature of thread execution.

4.1.4 Condition-action

This information type does not seem to be as important for Java as it would
be for, say Prolog or for an expert system programming shell. The clearest
example of condition action information is given in the behaviour rules in
Cocoa.

4.1.5 Data structure

There are two sides to data structure information, a static and a dynamic
aspect. Class hierarchies of an application, like those displayed by CodeVizor,
represent the static aspect of data structure information, while accounts of the
way objects execute their methods, like those presented by VisiComp or BluelJ,
represent its dynamic side. Data structure information, especially when
displayed in a representation with a strong graphical component, seems to be
the preferred way to visualise code for tutoring purposes in an Object Oriented
language like Java. More propositional representations of this information
type are employed by debugging browsers in the watch variables window.
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The predominant graphical convention to represent data structure information
seems to be to use boxes for data entities and lines or arrows to specify their
relationships. VisiComp shows dynamic data structures only, while Bluel
shows both dynamic and static data structures. However, in the latter system
the emphasis is on the relations between static data structures; the dynamic
ones are only shown as a product of their associated classes.

Almost all of the development environments attempt to show data structure
information by textual means through the watch variables window. Users
select the variables they want to watch and this window will show these
variables throughout the execution of the program. If these variables are
complex structures, they can be ‘expanded’ to show their elements. Probably
the main difference between the propositional and graphical approach to show
data structure relationships is that the textual watch window does not specify
static relations (class hierarchy). However, it seems that specifying both kinds
of relations in graphical data structure representations could potentially
confuse novices.

Finally, the table and histogram views in Jinsight (Figures 7, 10 and 9) do not
seem to highlight any of the information types referred to here. These views
seem to stress levels of execution activity that are important for code tuning.

4.2 The common representations

The most common representations in the environments described are those
used to represent control-flow (the threads/call stack window of debugging
environments, the tree window in JaViz and call tree view in Jinsight) and
data structure (the watch window of debugging environments, VisiComp and

Bluel).

As mentioned before, the propositional version of both control-flow and data
structure representations presents a set of elements representing threads or
methods that help to describe this information type. Every element is
displayed on a different line, and if they are complex structures they can be
expanded to show their components. When they expand, their components are
shown with an indentation to denote this hierarchical relation. These
components, if complex, can in turn be expanded in a recursive fashion.
Therefore, what is being displayed is a hierarchical tree.

The call tree view in Jinsight follows almost the same format. The only
difference is that every method entry displays additional information in a
table-like form.

Graphical control-flow and data structure representations comprise a network
of boxes joined by lines. The boxes represent program entities (methods,
classes and objects) and the lines represent relations between them. In the
case of control-flow, boxes represent methods and lines show the methods’
invocation path. Graphical control-flow representations belong to the language
T of trees, which according to Marriot and Meyer (1997), belong to the type of
context-free constraint multiset grammars.
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In the data structure case, boxes stand for either classes or objects and lines
can represent either hierarchical relations (the class of an object, a class that
was defined as having objects as variables) or data structure relations (a list of
objects). This type of representations belong to the language G of graphs,
which according to Marriot and Meyer (1997), belong to the type of
context-sensitive constraint multiset grammars.

The discussion about notational properties in the next section focuses on these
two information types and associated representations.

4.3 A notational analysis of the common external
representations provided by programming
environments

The notational analysis presented here is developed in terms of the activity
types the common representations support and the five dimensions described
in Section 2.3 (closeness of mapping, role-expressiveness, hard mental
operations, diffuseness/terseness and hidden dependencies).

The activity these representations support is program comprehension. They
can be considered as comprehension aids and as such, to be useful,
programmers have to perform a kind of translation from the program code to
these additional representations and back. Therefore, the activity type that
can be performed over these representations can loosely be described as
transcription. However, it has to be noted that translation is more a means
than an end. The objective of the programmer is not to translate between
representations but to understand a piece of code. This program
understanding may, most of the time, also be a supporting activity to perform
program debugging or re-use, for example. Another difference is that this
translation is more of a recognition rather than of a production task.
Programmers do not produce these representations, rather, they recognise
them as related (and as an alternative) to the program code.

These representations seem to have a good closeness of mapping. According
to Pennington (1987b), a program comprises several kinds of information and
some of these information types dominate the mental representations that
programmers build when comprehending a program. Research with
Object-Oriented programming languages indicates that function is an
important information type in this paradigm (Wiedenbeck & Ramalingam,
1999; Wiedenbeck, Ramalingam, Sarasamma, & Corritore, 1999; Corritore &
Wiedenbeck, 1999). It has been mentioned that, for certain kinds of
applications, data structure representations also seem to highlight function. In
these cases, it could be said that data structure representations have a good
closeness of mapping. However, one important aspect that has to be taken
into account is that these representations represent a kind of secondary
notation to the program code, and as such, it is not clear how they could
support this main representation.

According to Green and Petre (1996), role-expressiveness can be enhanced by
a secondary notation. Representations additional to the code, when used in
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program understanding tools can be considered as a kind of secondary
notation, not so much to the code, but to the programming environment.
However, it is not clear whether these representations should highlight the
same or different information types to the code. Wiedenbeck and Ramalingam
(1999) and Wiedenbeck et al. (1999) have found that Object-Oriented
programming code seems to highlight function at the cost of obscuring other
information types such as data-flow and control-flow. Therefore, one of the
common representations identified seems to be redundant to the code (data
structure), while the other seems to be complementary to it (control-flow). An
interesting research question is whether representations additional to the code,
and secondary notations in general, should be redundant and highlight similar
information to the main notation or be complementary and highlight different
information types. The answer to this question is likely to depend upon
factors such as program size and complexity and the programmer’s level of
skill among others.

Hard mental operations is a dimension particularly important for
representations used as an aid for program understanding. In theory, users
should be able to understand and even simulate the execution of their
programs using only the source code. One of the main motivations to have
representations additional to the code is to make ‘life easier’ for the
programmer, especially when trying to understand dynamic aspects of their
code. It seems that the representations analysed here do not impose hard
mental operations on the user. Perhaps one difficulty with them is that the
‘execution history’ is not recorded and therefore the user might sometimes
miss the exact moment when, for example, a variable changed its value. Some
way of recording the history of execution, like in the Prolog tracer described
in Patel et al. (1997), would be appropriate here.

Although each of these additional representations might not impose hard
mental operations on the programmer on its own, an issue that has to be
considered is the difficulty of co-ordinating several of these secondary
representations and the program code. Studies on co-ordination of
representations in other fields such as the learning of physics (Sime, 1996),
first order logic (Oberlander, Stenning, & Cox, 1999), arithmetic (Ainsworth,
Wood, & Bibby, 1996; Ainsworth, Wood, & O’Malley, 1998) and general
problem solving (Cox & Brna, 1995) have highlighted the difficulty to
co-ordinate several representations. This difficulty has not been considered, to
the best of our knowledge, in the design of programming environments and in
computer programming in general.

Regarding the diffuseness/terseness dimension, the main difference is between
propositional and diagrammatic representations. Propositional representations
normally employ an identifier for a program entity, while diagrammatic
representations use an identifier, boxes and lines. This seems to consume a
considerable amount of screen space and therefore propositional
representations are the best choice if the display area is considered as a limited
resource. As mentioned before, this might be one of the reasons why
commercial debugger browsers prefer propositional to diagrammatic
representations.
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One of the aims of representations additional to the code is to make hidden or
obscure dependencies explicit. Note that in order to achieve this several of
these additional representations have to be presented at the same time (as in
the debugger browsers described earlier). If only one of them is considered
some information might be lost and therefore dependencies will be hidden (for
example, it 1s impossible to obtain control-flow information from the watch
variables window). On the other hand, if many additional representations are
presented to the user it has already been mentioned that she might experience
difficulties in co-ordinating them. Therefore, there is a tension between
making hidden dependencies explicit and the difficulty of co-ordinating several
representations.

The analysis for these common representations shares many characteristics
with that of visual programming environments in Green and Petre (1996).
The main difference is that in the present case, the common representations,
together with the program code, have to be considered as a system. This is
why the issue of co-ordination of representations is of a central relevance here.

5 Conclusions

This paper has presented an overview of the external representations employed
in some of the most popular object-oriented programming environments.
These representations have also been characterised briefly in terms of their
information perspective and modality. Additionally, standard ways to
represent control-flow and data structure information in the representations
taken into account for this survey were identified. Finally, a brief analysis in
terms of Green’s (1989) Cognitive Dimensions was presented for these
control-flow and data structure representations.

From this analysis it seems that an important potential problem that has to
be considered here is the difficulty of co-ordinating these, or indeed any other,
additional representations. Also, another important issue has to do with
whether representations additional to the code, and secondary notations in
general, should be redundant and highlight similar information to the main
notation or be complementary and highlight different information types. More
theoretical knowledge about about the way these representational systems
influence the comprehension of computer programs is needed.
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