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Beacon Coverage in Orthogonal Polyhedra
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Abstract

We consider a variant of the Art Gallery Problem in or-
thogonal polygons and orthogonal polyhedra using bea-
cons as guards. A beacon is a device that attracts ob-
jects toward itself within a given domain. A beacon b
covers a point if when a beacon attracts it, it reaches
b. In this paper, we prove that there exist orthogonal
polyhedra whose exterior cannot be covered even if we
place a beacon at each of its vertices.
We also study the beacon coverage problem in or-

thogonal polyhedra, by extending the notion of vertex
beacons to edge beacons. We prove that

⌊
e
12

⌋
edge bea-

cons are always su�cient while
⌊

e
21

⌋
edge beacons are

sometimes necessary to cover any orthogonal polyhe-
dron. We also prove that

⌊
e
6

⌋
edge beacons are always

su�cient to cover simultaneously the interior and the
exterior of any orthogonal polyhedron.

1 Introduction

A beacon is a �xed point in a polyhedron P that can
induce a magnetic pull toward itself over all points in P .
When a beacon b is activated, points in P move greedily
to decrease their euclidean distance to b. A point p can
move along any obstacles it hits on its way to a beacon
b as long as its distance to b keeps on decreasing. Thus,
the path from the initial position of p to a beacon b
may alternate between moving in straight line segments
contained in the interior of P and line segments on the
faces of P .
The piecewise linear path created by the movement

of p under the attraction of b is called the attraction
path of p with respect to b. If the attraction path of
p ends in b, we say that p is covered by b. If p is in a
position where it is unable to move in such a way that
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its distance to b decreases, we say that it is 'stuck' and it
has reached a local minimum, or dead end, see Figure 1.
Beacon attraction was introduced by Biro et al. [3, 4,

5]. This model extends the classical notion of visibility;
if an object p is visible from a beacon q, then p moves
towards q along the straight line segment joining p to q.
In this paper we consider two beacon coverage prob-

lems in orthogonal polygons and orthogonal polyhedra.
The beacon coverage problem asks for a minimum set
B of beacons placed in a domain P , in such a way that
any point p ∈ P is covered by at least one element of
B. We then study the interior-exterior beacon coverage
problem in which we ask for a minimum set B of bea-
cons placed on the boundary of a domain P , in such a
way that any point p ∈ P and any point p′ /∈ P are
covered by at least one element of B.

2 Preliminaries

Let P be an orthogonal polygon on the plane. An edge
e of P is a right edge if there is an ε > 0 such that
any point at distance less than or equal to ε from any
interior point of e and to the left of e belongs to the
interior of P . Left, top and bottom edges are de�ned
similarly.
A polyhedron in R3 is a compact connected set

bounded by a piecewise linear 2-manifold. A face of a
polyhedron is a maximal planar subset of its boundary
whose interior is connected and non-empty. A polyhe-
dron is orthogonal if all of its faces are parallel to the
XY, XZ or YZ planes. An edge is a minimal positive-
length straight line segment shared by two faces and
joining two vertices of the polyhedron. Each edge, with
its two adjacent faces, determines a dihedral angle, in-
ternal to the polyhedron. In an orthogonal polyhedron
each such angle is of either 90o (at a convex edge) or
270o (at a re�ex edge).
An X -plane is a plane that is perpendicular to the X -

axis; we de�ne a Y-plane and a Z-plane in a similar way.
An X -face is a face of a polyhedron that is contained
in an X -plane; we de�ne a Y-face and a Z-face in a
similar way.
A Y-face f of an orthogonal polyhedron P is a left

face (right face), if for any interior point q ∈ f there is
an ε > 0 such that any point at distance less than or
equal to ε from q and to the right (left) of f belongs to
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the interior of P . In a similar way, Z-faces are classi�ed
into top or bottom faces, and X -faces, as front or back
faces.
A connected polyhedron P is a lifting polyhedron if

there exists a Z-plane Q such that for all planes parallel
to Q their intersection with P is either empty, or it is a
vertical translation of the intersection of P with Q.
The next de�nition was given by Damian et al. in

[7]. An orthotree P is an orthogonal polyhedron made
of cuboids glued face to face, such that the dual graph
of P is a tree. The intersection of two adjacent cuboids
in P is a 2-dimensional face of both cuboids, namely, a
non-degenerate rectangle.
In this paper we consider two models of beacon at-

traction, vertex beacons and edge beacons. In the vertex
beacon model, we place point beacons on the vertices of
P . In the edge beacon model, we place a point beacon
at each point of a closed edge e of P . We call e an edge
beacon. When an edge beacon b is activated in an or-
thogonal polyhedron, an object p always moves towards
the point q ∈ b closest to p. If p reaches q we say that
b covers p. Observe that if q is not an endpoint of b,
the attraction path of p to q is contained in the plane β
orthogonal to b that contains q. Therefore, in this case
the attraction path of p with respect to b is as in R2,
considering q as the beacon and P ∩ β as the polygon.
Consider the connected component S of pq ∩ P that

contains p. If S contains other points di�erent from p,
then p continues moving to q along −→pq. Otherwise, p
hits ∂P and there are three cases: (i) If p hits a vertex
v, then p gets stuck at v. (ii) If p hits a point x in the
interior of an edge e, and the orthogonal projection qe of
q over the straight line that contains e is di�erent from
p, then p moves along −→pqe. Otherwise, p gets stuck at
x. (iii) If p hits a point x in the interior of a face f , and
the projection qf of q over the plane that contains f is
di�erent from p, then p moves along −→pqf . Otherwise, p
gets stuck at x.
Figure 1 shows two examples of points reaching local

minima on their way to vertex and edge beacons.

3 Covering orthogonal polygons

Bae et al. [2] proved that the interior of any orthogonal
n-gon can be covered with

⌊
n
6

⌋
vertex beacons. We

consider now the problem of simultaneously covering
the interior and exterior of orthogonal polygons.

Theorem 1 Let P be an orthogonal polygon (possibly
with holes) with n vertices. Then

⌊
n
4

⌋
+1 vertex beacons

are always su�cient to simultaneously cover the interior
and the exterior of P .

Proof. Suppose w.l.o.g. that there are at most
⌊
n
4

⌋
right edges of P . Let B be the set of bottom vertices
of the right edges of P . We place a beacon on each

(a) (b)

Figure 1: Two examples of points that reach a local min-
imum: (a) The attraction path of a point with respect
to a vertex beacon and an edge beacon, both unreach-
able, and (b) the point gets stuck on its way to an edge
beacon.

b ∈ B. We will prove that this set of beacons covers
P . For each b ∈ B consider the maximal vertical line
segment sb that contains b and is contained in P . Note
that the set of line segments S = {sb : b ∈ B} divides P
into histograms, such that in each histogram: There is
only one right edge, and all top and bottom edges are
contained in edges of P (since we only use vertical line
segments to divide P ), see Figure 2.
Let p be a point in a histogram H with H ⊂ P and let

bh be one of the vertices of B that lie in the right edge
of H. We will prove only the case when p is on or above
bh, the proof for the other case is symmetric. We claim
that p is covered by the beacon placed in bh. If p is on
the right edge of H, we are done. Suppose p is above
and to the left of bh. Since H has only one right edge,
the attraction path T of p with respect to bh can only hit
bottom edges of H. Since all the bottom edges of H are
contained in edges of P , it follows that T is contained
in H. If T does not �nish at bh, then it reaches a local
minimum in a bottom edge of H. This local minimum
has to be exactly above bh, which is impossible because
bh is contained in the unique right edge ofH. Therefore,
these beacons cover the interior of P .
Now we prove that the beacons placed on the elements

of B plus an extra beacon cover the exterior of P . Let
R be a rectangle containing P in its interior. Let P ′ =
R\int(P ), where int(P ) denotes the interior of P . Note
that the elements in B are bottom vertices of left edges
of P ′. As before, we can use the same technique to cover
the interior of P ′ with beacons placed on the elements of
B plus an extra beacon placed on the bottom vertex v

R

of a leftmost edge of R. We will prove that this beacon
can be replaced by a beacon placed on the bottom vertex
vl of the leftmost edge of P .
Let H

R
⊂ P ′ be the histogram whose left edge is the

left edge of R. Let p be a point contained in H
R
. If p

is to the left of the vertical line ` trough vl then we are
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done. We will prove only the case when p is to the right
of `, and above the horizontal line h trough vl. The
proof for the case when p is below h is symmetric.
Since H

R
has only one left edge, the attraction path

T of p with respect to vl can only hit bottom edges of
H

R
. Since all the bottom edges of H

R
are contained

in edges of P except for the one that is contained in
the bottom edge of R, T is contained in H

R
. If T does

not �nish at vl, then it reaches a local minimum in the
interior of a bottom edge of H

R
. This local minimum

has to be exactly above vl, which is impossible because
vl is contained in a leftmost edge of P . Therefore H

R
is

covered by the beacon placed at vl. Hence the beacons
in B together with vl cover both the interior and the
exterior of P . �

Figure 2: Regions obtained by the decomposition se-
lecting the bottom vertices of the right edges of P .

4 Covering orthogonal polyhedra

It is known that not every polyhedron can be covered
with vertex beacons [6], even if the polyhedron is or-
thogonal [1]. There exist well known families of orthogo-
nal polyhedra whose interior can be covered with vertex
beacons. Such is the case of the orthotrees [1]. However,
there exists an orthotree polyhedron such that it is not
possible to cover its exterior with vertex beacons. That
is the case of the polyhedron shown in Figure 3a, that
we describe next.
Our example is based on the octoplex polyhedron,

proposed by T. S. Michael in [8]. The octoplex consists
of a cuboid with six channels, each one of them going
across a di�erent face. It is known that the octoplex
cannot be guarded with vertex guards (a vertex guard is
a guard placed on a vertex). We take six notched beams
arranged as the six channels of the octoplex. Then we
join them by means of orthogonal pipes arranged prop-
erly to form an orthotree, see Figure 3a.

A point in the exterior of P that is not covered by any
vertex of P is the "center" point p of the region enclosed
by the beams of P . Consider the wedge (dihedral angle)
whose axis is vertical and contains p. This wedge is
delimited by the two edges at the end of the concavity
of the notch of the red beam, see Figure 3b. Note that
the beam divides the wedge into two connected regions:
Wp which contains p and W ′p which does not. Following
the notation of Figure 3c, the polyhedron is constructed
with p at the origin so that q and v satisfy qy

qx
<

vy
vx
, thus

ensuring that the pq ray intersects the notch of the red
beam. Therefore, any beacon placed in the interior of
W ′p cannot cover p. Similarly, we construct a wedge for
each beam in such a way that every vertex of P is in
the interior of one of these wedges.

(a) (b)

(c)

Figure 3: (a) An orthotree whose exterior cannot be
covered with vertex beacons. (b) Wedge whose axis is
vertical and contains the center point p. This wedge is
delimited by the two edges at the end of the concavity
of the notch of the red beam. (c) Orthogonal projection
in the XY plane of some conveniently selected elements.
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Since vertex beacons are not enough to cover orthog-
onal polyhedra, it is natural to study the edge beacon
model. It is straightforward to see that if we place an
edge beacon at each edge of a polyhedron P (orthogonal
or not) these edge beacons always cover P .
Next, we prove that any orthogonal polyhedron with

e edges can be covered with
⌊

e
12

⌋
edge beacons and that

sometimes
⌊

e
12

⌋
edge beacons are necessary. We also

prove that
⌊
e
6

⌋
edge beacons are always su�cient to

simultaneously cover the interior and exterior of any
orthogonal polyhedron. In another paper we prove that
any orthotree with n vertices can be guarded with at
most

⌊
n
8

⌋
vertex guards, and therefore covered using at

most
⌊
n
8

⌋
vertex beacons [1].

4.1 Covering orthogonal polyhedra with edge bea-
cons

Now we de�ne for each F ∈ {left, right, top, bottom,
front, back} and for each E ∈ {left, right, top, bottom,
front, back} the F-E rule. The F-E rule selects the E
edges from the F faces of an orthogonal polyhedron P ,
seen from the outside. For example, the right-bottom
rule selects the bottom edges of the right faces of P .
Note that each face type contains only four di�erent
types of edges, namely, if F = front (or back) then E ∈
{left, right, top, bottom}, if F = top (or bottom) then
E ∈ {left, right, front, back}, and if F = right (or left)
then E ∈ {front, back, top, bottom}. Thus, a rule like
the top-bottom rule selects no edges of P .

Lemma 2 For every orthogonal polyhedron P there ex-
ists an F-E rule which selects at most

⌊
e
12

⌋
edges from

P , where e is the number of edges of P .

Proof. Let A,B,C be the number of edges in the Y, X ,
and Z faces, respectively. Since A+B+C = 2e one of A,
B or C is at most

⌊
2e
3

⌋
. Then suppose w.l.o.g. that the

set FY consisting of the Y faces has at most
⌊
2e
3

⌋
edges

of P . There are two kinds of faces in FY : left and right.
Let R ⊂ FY be the set of right faces of FY and let ER

be the set of edges that belong to faces of R. Suppose
w.l.o.g. that |ER| is at most half of the number of edges
belonging to the faces of FY , i.e., |ER| ≤

⌊
e
3

⌋
. There

are four kinds of edges in ER: top, bottom, front and
back. Therefore one of these four types of edges has at

most
⌊
|ER|
4

⌋
edges of P . Suppose w.l.o.g that the set of

bottom edges of ER has at most
⌊
|ER|
4

⌋
≤
⌊

e
12

⌋
edges of

P . Note that these are the edges selected by the right-
bottom rule. In any other case the proof is analogous by
selecting the appropriate F-E rule. �

Theorem 3 Let P be an orthogonal polyhedron with e
edges. Then

⌊
e
12

⌋
edge beacons are always su�cient to

cover P .

(a) (b)

Figure 4: (a) The point p and the X−plane β, (b) poly-
gon Q.

Proof. By Lemma 2 we can suppose w.l.o.g. that the
set B of edges selected by the right-bottom rule has at
most

⌊
e
12

⌋
edges.

We place an edge beacon on each b ∈ B. We will
prove that this set of edge beacons covers P . Let p be a
point in P . Let β be the X -plane that contains p. Let
Q be the connected component of β ∩ P that contains
p, as shown in Figure 4. Note that Q is an orthogonal
polygon, and that each bottom vertex of a right edge of
Q is of the form b ∩Q for some b ∈ B.
Since the attraction path of p with respect to an edge

beacon remains in β, using the same reasoning as in the
proof of Theorem 1, we can prove that p is covered by
a beacon placed on an edge b ∈ B. �

Theorem 4 There exists a family of orthogonal poly-
hedra with e edges, such that

⌊
e
21

⌋
edge beacons are nec-

essary to cover their interior.

Proof. We construct a lifting polyhedron P , based on
a rectangular spiral polygon consisting of a sequence of
r + 1 thin rectangles, Figure 5 shows a top view of P .
Let e0, e1, . . . , er be a set of consecutive convex edges

of P that are parallel to the Z-axis, whose orthogonal
projections are shown in Figure 5. Let e′1, e

′
2, . . . , e

′
r−1

be the set of consecutive re�ex edges of P that are par-
allel to the Z-axis, and e′0 and e′r be the convex edges
of P parallel to the Z-axis that have an incident face in
common with e′1 and e′r−1, respectively. From the top,
they correspond to the re�ex and convex vertices of the
projection of P on the XY plane, see Figure 5.
Suppose for the sake of simplicity that r = 7m for

m ∈ N. For each 0 ≤ k < m, we place a distinguished
point pk in the interior of P near enough the center of
the face formed by the edges e′7k and e

′
7k+1, and a distin-

guished point p′k in the center of the rectangle formed
by the edges e′7k+4 and e7k+4, as shown in Figure 5.
Note that p′k is in a region that is not covered by e7k+2,
e′7k+2, e7k+6 neither e′7k+6.
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Note that there is no edge covering two distinguished
points at the same time. Since there are 2r

7 distin-
guished points and P has e = 6(r + 1) edges, we need
at least

⌊
e
21

⌋
edge beacons to cover P . �

Figure 5: Orthogonal projection over the XY plane of a
spiral polyhedron with e edges that requires

⌊
e
21

⌋
edge

beacons to cover its interior. Note that
⌊

e
21

⌋
edge bea-

cons, represented as the red edges and the red vertices,
are su�cient to cover this polyhedron.

Theorem 5 Let P be an orthogonal polyhedron with e
edges. Then

⌊
e
6

⌋
edge beacons are always su�cient to

simultaneously cover the interior and exterior of P .

Proof. Let X, Y , and Z be the number of edges in-
cident to the X -faces, the Y-faces, and the Z-faces re-
spectively. Since X + Y +Z = 2e, one of X, Y , or Z is
at most

⌊
2e
3

⌋
. Let F be the set of edges incident to the

Y-faces of P and suppose w.l.o.g. that |F | is at most⌊
2e
3

⌋
. There are two types of faces in F , left and right,

and each of them contains four di�erent types of edges:
top, bottom, front, and back. Let Etb be the set ob-
tained by selecting �rst the top edges of the left faces of
F and then the bottom edges of the right faces of F . In
this manner, we can obtain only four di�erent subsets
of edges from F , and thus one of them contains at most⌊
|F |
4

⌋
edges of P .

Suppose w.l.o.g. that |Etb| =
⌊
|F |
4

⌋
≤
⌊
e
6

⌋
. We place

a beacon in each e ∈ Etb. Consider the bounding box B
of P . Note that the top face of B contains the topmost
faces of P , each of which contains at least one element
of Etb. Therefore, any point above the top face of B is
covered. A similar reasoning can be used to prove that
any point to the left of the left face of B, below the
bottom face of B, or to the right of the right face of B
is covered. A frontmost face of P contains at least the
endpoints of two elements of Etb, therefore, any point
in front of the front face of B is covered. Analogously, a
point to the back of the back face of B is also covered.
We only have to prove that any point p /∈ P in the
interior of the bounding box B can be covered by a
beacon placed on an element of Etb.
Let Qp be the X -plane containing p. Note that Qp

contains one or more polygons produced by the inter-
section of Qp with P , and that each bottom vertex of
a right edge of a polygon in Qp and each top vertex of
a left edge of a polygon in Qp is of the form b ∩Qp for
some b ∈ Etb.
From p ∈ Qp, shoot two vertical rays, one to the top

and one to the bottom, and two horizontal rays, one
to the left and one to the right. Two cases may arise,
either a ray hits an edge of a polygon in Qp, or it does
not.
Suppose w.l.o.g that the ray ` shot up to the top hits

a bottom edge e of a polygon in Qp. If we slide ` to the
right three cases may occur:

� We reach the endpoint v of e, and v is a convex
vertex. Since v is the bottom vertex of a right edge
of a polygon in Qp, it corresponds to an element of
Etb in P .

� We reach the endpoint v of e, and v is a re�ex
vertex. Vertex v is the top vertex of a left edge
of a polygon in Qp, therefore it corresponds to an
element of Etb in P .

� We reach a vertical edge of a polygon in Qp, which
corresponds to a left face with an element of Etb

in P .

In any case, p is covered by a beacon. The proof for
the other cases is similar. Now suppose that none of the
rays shot up from p hits an edge of Qp. Let ` be the
line parallel to the X -axis that contains p and suppose
w.l.o.g that there exists a polygon above p in Qp. Con-
tinuously move ` to the top maintaining it horizontal
until it hits an edge a of a polygon in Qp. Since a is
a bottom edge, it has a right vertex corresponding to
an element of Etb. Figure 6 shows an example of this
case. The proof for the case when there exists a polygon
below p in Qp is symmetric.
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It follows that the exterior of P is covered. Notice
that Etb is composed by the edges selected by the top-
left and the bottom-right F-E rules, it follows from the
construction of the proof of Theorem 3 that the interior
of P is also covered. �

(a) (b)

Figure 6: (a) An orthogonal polyhedron and a point
p in its exterior, p is intersected by an X -plane. (b)
The intersection of the X -plane with p. Red vertices
represent bottom right edges. Green vertices represent
top left edges.

5 Conclusions

In this paper we de�ne a model of attraction by edge
beacons. We shown an orthogonal polyhedron whose
exterior cannot be covered with vertex beacons. We
proved that

⌊
e
12

⌋
edge beacons are always su�cient and⌊

e
21

⌋
edge beacons are sometimes necessary to cover the

interior of an orthogonal polyhedron. We are also in-
terested in covering both the interior and exterior of an
orthogonal polyhedron at the same time. We proved
that

⌊
e
6

⌋
edge beacons are always su�cient to simulta-

neously cover the interior and exterior of an orthogonal
polyhedron.
Some interesting open problems are: Closing the gap

between the upper and lower bounds in both the interior
and in the interior-exterior beacon coverage problems
in orthogonal polyhedra. Perhaps more challenging is
the study of the beacon coverage problem in general
polyhedra.
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