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Abstract1

We consider a variation on the classic art gallery prob-2

lem on orthogonal and simple polygons. In our set-3

ting, our guards have a bounded angle of visibility,4

and they rotate uniformly. For orthogonal polygons,5

we study the case of illuminating the interior or the6

exterior of a polygon with or without holes with rotat-7

ing floodlights of size 3π
2 . We also study the problem8

of illuminating simple polygons using rotating flood-9

lights of size π.10

1 Introduction11

In 1973, V. Klee [5] posed the problem of determining12

how many lights are always sufficient to illuminate the13

interior of an art gallery represented by a simple poly-14

gon on the plane. V. Chvátal proved that bn3 c lights15

are always sufficient an sometimes necessary. Shortly16

thereafter Fisk [8] gave an elegant and simple proof17

of Chvátal’s result. In 1987, J. O’Rourke published18

the book Art Gallery Theorems and Algorithms [10],19

solely dedicated to the study of illumination problems20

of polygons in the plane. Since then, several vari-21

ants on this original problem have been posed. Some22

of these variants involve illuminating some restricted23

families of simple polygons, e.g. orthogonal polygons,24

or using light sources with a restricted angle of illu-25

mination, called floodlights, or more recently modem26

illumination problems in which the signal emmited by27

a source (e.g. a wireless modem) can penetrate several28

edges of a polygon [7, 2]. The surveys of T. Shermer29

[11] and J. Urrutia [13] are good sources of informa-30

tion of most of the variations studied of the original31

Art Gallery problem.32

An α-floodlight f is a light source that emits light33

within a cone of angular size α bounded by two rays34

emanating from a point, the apex of f , α is called the35

size of f . In 1997, Urrutia [4] proposed the problem36

of illuminating the plane with n floodlights of sizes37
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α1, . . . , αn such that their apices have to be located38

at a given point set P with n elements, one apex per39

point. In [4] it was proved that this can always be40

done if α1 + · · · + αn = 2π, and α1, . . . , αn ≤ π. In41

1994, Estivill-Castro et al. [6] studied the following42

problem: How many π/2 vertex floodlights are al-43

ways sufficient and sometimes necessary to illuminate44

an orthogonal polygon with n vertices? They proved45

that the answer to that question is precisely 3n−4
8 . In46

all of these variants the floodlights are static. In 2011,47

Urrutia posed the problem of illuminating the plane48

with rotating floodlights of a given size such that their49

apices have to be located at the elements of a point set50

P , see E. Kranakis et al. [9]. They studied the prob-51

lem of determining the initial orientation and sizes52

of a set of rotating floodlights that always illuminate53

the plane. They proved, among other results, that54

three floodlights of size π are sufficient and necessary55

to illuminate the plane all the time, as the floodlights56

rotate counterclockwise at the same speed. In 2013,57

Bereg et al. [3] studied a similar problem in which58

the apices of rotating floodlights have to be located59

at the elements of a point set P , and the elements of60

a second point set must be always illuminated by at61

least one floodlight.62

We will assume that all the lights rotate counter-63

clockwise such that at a time t = α, they have rotated64

α degrees. We say that a point p of the plane is il-65

luminated by a floodlight f at instant t (w.r.t some66

polygon P ), if the segment fp is contained in the il-67

lumination angle of f at time t, and there is no edge68

of P intersecting the interior of fp. In this paper we69

study the following problems: i) illumination of or-70

thogonal polygons with vertex floodlights of size 3π
271

(i.e. located at the vertices of the a polygon). And72

ii) illumination of simple polygons with vertex flood-73

lights of size π. For simplicity, we assume that all74

floodlights rotate counter-clockwise. We give sharp75

bounds for both problems.76
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2 Orthogonal polygons77

We use the following notation as in [12]. Given an78

orthogonal polygon P , we call an edge of P a top edge79

if there is an ε > 0 such that any point at distance less80

than or equal to ε from the mid-point of e, and below81

e belongs to the interior of P . Right, bottom, and left82

edges are defined in a similar way. A vertex of P is83

called a top-left vertex if the edges of P incident to84

it are a top and a left edge. Top-right, bottom-right,85

and bottom-left vertices are defined in a similar way;86

see Figure 1. Since a vertex may also be convex or87

reflex, there are eight possible types of vertices in an88

orthogonal polygon.89

Figure 1: In (a) e is a top edge, f is a right edge, and
v is a TR-vertex. In (b) f is a left edge, and v is a
TL-vertex.

For a given rotating floodlight f , the beginning of90

f is the oriented half-line starting at the apex of f ,91

that leaves the area illuminated by f to its right, and92

the area not illuminated by f to its left. The end of93

f is defined in a similar way, see Figure 2.94

Figure 2: Beginning, end and orientation of a flood-
light.

Given a rotating floodlight f , its orientation at time95

t is the value of the (non-negative) angle made from96

the positive x-axis to the beginning of f , for illustra-97

tion see Figure 2.98

Following [1] we define placement rules for α-99

floodlights at the vertices of an orthogonal polygon as100

follows: in the Top-Left-illumination rule (for short101

the TL-illumination rule), we place an α-floodlight at102

the left endpoint of each top edge, and an α-floodlight103

at the top vertex of each left edge. Unless otherwise104

specified, we will assume that the orientation of our105

α-floodlights is 0. For example if α = π, in the ini-106

Figure 3: TL-rule for π
2 -floodlights.

tial position of a π-floodlight, it will illuminate the107

half-plane below the line passing through its apex.108

The other three possible rules (TR-rule, BR-rule,109

and BL-rule) are defined in a similar way, see Fig-110

ure 3, although the orientations of the floodlights are,111

respectively 3π
2 , 2π

2 , and π
2 .112

Now we define the α-(TR,BL)-illumination rule as113

the union of the α-floodlights of the TR-illumination114

rule, and the BL-illumination rule, with the addi-115

tional restriction that all the α-floodlights start with116

equal orientations. The α-(TL,BR)-illumination rule117

is defined similarly. The following result proved in [1]118

will be used.119

Theorem 1 [1] Let P be an orthogonal polygon with120

or without holes. Then the TL-illumination rule pro-121

duces an assignment of static floodlights of size π
2 ,122

that illuminate the interior of P .123

The same is true for each of the TR-illumination124

rule, the BR-illuminatio rule and the BL-illumination125

rule.126

3 Guarding the interior of orthogonal polygons127

The main result of this section is the following Theo-128

rem.129

Theorem 2 Let P be an orthogonal polygon with130

2m vertices, with or without holes. Then, m 3π
2 -131

rotating floodlights, with initial orientation 0, and lo-132

cated according to the 3π
2 -(TR,BL)-illumination rule133

or the 3π
2 -(TL,BR)-illumination rule, are always suf-134

ficient to illuminate P . Furthermore m 3π
2 -rotating135

floodlights are sometimes necessary.136

Proof. Let f be a 3π
2 -rotating floodlight, placed at137

a vertex v of P by the TL-illumination rule. We138

say that f is active at a time t according to the TL-139

illumination rule if f illuminates the region that would140

be illuminated by a (non-rotating) π
2 -floodlight placed141

at p by the TL-illumination rule. In a similar way we142

define an active 3π
2 -rotating floodlight according to143

the TR-, BR-, and BL-illumination rules.144
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Figure 4: Orthogonal polygons that need m 3π
2 -

rotating floodlight to be illuminated.

Figure 5: Floodlights f1 and f2 work together to il-
luminate the semi-plane S. It is shown how both of
them illuminate for a period of time 2π.

If a rotating 3π
2 -floodlight f was placed according145

to the TL-illumination rule, then f is active according146

to the TL-illumination rule in the interval [0, π]. In a147

similar way we can prove that if f was placed accord-148

ing to the BR-illumination rule, it will be active in the149

interval [π, 2π]. Thus rotating floodlights placed ac-150

cording to the the 3π
2 -(TL,BR)-illumination rule will151

always illuminate P . The second case is proved in a152

similar way.153

To prove that the above bound is tight, we can see154

that the orthogonal polygons with 2m vertices shown155

in Figure 4, requires m rotating 3π
2 -rotating floodlight156

to be illuminated.157

�158

4 Guarding the exterior of orthogonal polygons159

In this section we give tight bounds on the number160

of floodlights needed to illuminate the exterior of a161

polygon. The following lemma is given without proof:162

Lemma 3 Let S be a semiplane. Two 3π
2 -rotating163

floodlights placed on a horizontal line ` are sufficient164

and necessary to illuminate the half-plane above `.165

See Figure 5.166

Theorem 4 Let P be an orthogonal polygon with167

2m vertices, with or without holes. Then, m+ 2 3π
2 -168

rotating floodlights, located at the vertices of P , are169

always sufficient, and sometimes necessary, to illumi-170

nate the exterior of P .171

Figure 6: Illuminating the exterior of an orthogonal
polygon.

Figure 7: Polygons requiring m+2 3π
2 -rotating flood-

lights to illuminate their exterior.

Proof. (sketch) Let B be the smallest rectangle that172

contains P , and let L1, L2, L3 and L4 be its support-173

ing lines, see Figure 6. We illuminate first the exterior174

of B using Lemma 3. Observe that B \ P is a set of175

orthogonal polygons, each of which is illuminated ac-176

cording to Theorem 2. It is easy to see that, in total177

we use m+ 2 floodlights. The details are omitted for178

lack of space.179

To prove that the above bound is tight, we can see180

that the orthogonal polygons with 2m vertices illus-181

trated in Figure 7, requires m + 2 floodlights to be182

illuminated. �183

5 Guarding the interior of simple polygons with184

rotating floodlights of size π185

In this section we study the problem of illuminating186

simple polygons with rotating floodlights of size π, lo-187

cated on vertices of the polygon. We give tight bounds188

on the number of π-rotating floodlights needed to il-189

luminate the interior of a simple polygon.190

The following Lemma is given without a proof.191

Lemma 5 Three π-rotating floodlights are sufficient192

and necessary to illuminate a triangle T .193

It is not hard to verify that in order to illuminate T ,194

the three π-rotating floodlights, must start with the195
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Figure 8:

Figure 9: Polygons whose number of required flood-
lights reaches the lower bound. Note that each peak of
a polygon requires three floodlights to be illuminated.

same orientations, for otherwise at some time t, they196

will fail to illuminate T , see Figure 8. We proceed to197

show now the main result in this section.198

Theorem 6 Let P be a simple polygon with n ver-199

tices. Then, n rotating π-floodlights, located at the200

vertices of P , are always sufficient, and sometimes201

necessary, to illuminate P .202

Proof. Place at each vertex of P a rotating π-203

floodlight such that all of them start with the same204

orientation, and consider a triangulation T (P ) of P .205

By Lemma 5, each triangle in T will be illuminated.206

Therefore P is illuminated.207

Consider now the family of polygons with 2m + 1208

vertices shown in Figure 9. It is easy to see that the209

interior of the triangle with vertices v2i+1, v2i+2, v2i+3210

can be illuminated only with the floodlights at v2i+1,211

v2i+2, and v2i+3, i = 1, . . . ,m− 1. It is easy to verify212

that in order to illuminate the triangles with vertices213

v1, v2, and v3, and the triangle with vertices v2m−1,214

v2m, and v2m+1 we also need a rotating π-floodlight215

at each of these vertices. �216

6 Conclusions and future work217

We have given sharp bounds on the number of ro-218

tating vertex α-floodlights required to illuminate or-219

thogonal and simple polygons. All of our results lead220

trivially to linear time algorithms to find the vertices221

of the polygons where the floodlights have to be lo-222

cated, as well as their initial orientations.223

In a forthcoming paper we will prove that the prob-224

lem of finding the smallest number of rotating α-225

floodlights required to always illuminate a given poly-226

gon is NP -complete.227
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