
 1999;319;508-512 BMJ
  
David J Spiegelhalter, Jonathan P Myles, David R Jones and Keith R Abrams 
  

 technology assessment
introduction to bayesian methods in health 
Methods in health service research: An

 http://bmj.com/cgi/content/full/319/7208/508
Updated information and services can be found at: 

 These include:

 References

 http://bmj.com/cgi/content/full/319/7208/508#otherarticles
16 online articles that cite this article can be accessed at: 
  

 http://bmj.com/cgi/content/full/319/7208/508#BIBL
This article cites 18 articles, 5 of which can be accessed free at: 

Rapid responses

 http://bmj.com/cgi/eletter-submit/319/7208/508
You can respond to this article at: 
  

 http://bmj.com/cgi/content/full/319/7208/508#responses
free at: 
One rapid response has been posted to this article, which you can access for

 service
Email alerting

the top left of the article 
Receive free email alerts when new articles cite this article - sign up in the box at

 Notes   

To order reprints follow the "Request Permissions" link in the navigation box 

 http://resources.bmj.com/bmj/subscribers
 go to: BMJTo subscribe to 

 on 18 September 2008 bmj.comDownloaded from 

http://bmj.com/cgi/content/full/319/7208/508
http://bmj.com/cgi/content/full/319/7208/508#BIBL
http://bmj.com/cgi/content/full/319/7208/508#otherarticles
http://bmj.com/cgi/content/full/319/7208/508#responses
http://bmj.com/cgi/eletter-submit/319/7208/508
http://resources.bmj.com/bmj/subscribers
http://bmj.com


takes an interdisciplinary approach to stemming the
epidemic, building links with other international organi-
sations, non-governmental organisations, the private
sector, and the research community.

Communicating reality and vision
Much remains to be done to raise awareness and con-
cern about cancer in the developing world. The yawn-
ing gap between poor and rich countries persists, and
cheap effective technologies such as hepatitis B vaccine
are not applied. There is a pressing need to deal prag-
matically with today’s problems by setting realistic pri-
orities. Yet health professionals also have a responsibil-
ity to expand what is feasible. As Article 27 of the
Universal Declaration of Human Rights states, “Every-
one has the right . . . to share in scientific advancement
and its benefits.” This vision can be communicated
through persuasive and practical arguments for
placing cancer in developing countries squarely in
context—and firmly on the agenda.
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Methods in health service research
An introduction to bayesian methods in health technology
assessment
David J Spiegelhalter, Jonathan P Myles, David R Jones, Keith R Abrams

Bayes’s theorem arose from a posthumous publication
in 1763 by Thomas Bayes, a non-conformist minister
from Tunbridge Wells. Although it gives a simple and
uncontroversial result in probability theory, specific
uses of the theorem have been the subject of consider-
able controversy for more than two centuries. In recent
years a more balanced and pragmatic perspective has
emerged, and in this paper we review current thinking
on the value of the Bayesian approach to health tech-
nology assessment.

A concise definition of bayesian methods in health
technology assessment has not been established, but
we suggest the following: the explicit quantitative use of
external evidence in the design, monitoring, analysis,
interpretation, and reporting of a health technology
assessment. This approach acknowledges that judg-
ments about the benefits of a new technology will
rarely be based solely on the results of a single study
but should synthesise evidence from multiple
sources—for example, pilot studies, trials of similar
interventions, and even subjective judgments about the
generalisability of the study’s results.

A bayesian perspective leads to an approach to
clinical trials that is claimed to be more flexible and
ethical than traditional methods,1 and to elegant ways
of handling multiple substudies—for example, when
simultaneously estimating the effects of a treatment on
many subgroups.2 Proponents have also argued that a
bayesian approach allows conclusions to be provided
in a form that is most suitable for decisions specific to
patients and decisions affecting public policy.3

Many questions remain: notably, to what extent the
scientific community or regulatory authorities will
allow the explicit consideration of evidence that is not
totally derived from observed data. In this article we

Summary points

Bayesian methods interpret data from a study in
the light of external evidence and judgment, and
the form in which conclusions are drawn
contributes naturally to decision making

Prior plausibility of hypotheses is taken into
account, just as when interpreting the results of a
diagnostic test

Scepticism about large treatment effects can be
formally expressed and used in cautious
interpretation of results that seem “too good to be
true”

Multiple subanalyses can be brought together by
formally expressing a belief that their conclusions
should be broadly similar

Use of bayesian methods in health technology
assessment should be pursued cautiously;
guidelines, software, and critically evaluated case
studies are needed
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outline the available literature, discuss the main
techniques that are being suggested, and provide some
recommendations for future work.

Nature of the evidence
A “bayesian” approach can be applied to many
scientific issues, and a search for this term in the Insti-
tute for Scientific Information’s database yielded nearly
4000 papers over the period 1990-8. About 200 of
these were relevant to health technology assessment.
Using these as a source for forward and backward
searches, and searching other databases (Embase and
Medline) and sources, we identified about 300 papers,
including about 30 reports of studies taking a fully
bayesian perspective. A considerable further number
of studies have taken a so called “empirical Bayes”
approach, which uses elements of bayesian modelling
without giving a bayesian interpretation to the conclu-
sions; these are further mentioned below.

The published studies are dispersed throughout
the literature and, apart from one recent collection of
papers,4 the only textbook which might be considered
to be on bayesian methods in health technology
assessment focuses on the confidence profile
approach.5 Published studies are mainly demonstra-
tions of the approach rather than complete assess-
ments, and though many articles advocate bayesian
methods, practical take-up seems low.

Findings
Philosophy of the bayesian approach
Bayes’s theorem is a formula that shows how existing
beliefs, formally expressed as probability distributions,
are modified by new information. Diagnostic testing is a
familiar situation to which the theorem can be applied; a
doctor’s prior belief about whether a patient has a
particular disease (based on knowledge of the preva-
lence of the disease in the community and the patient’s
symptoms) will be modified by the result of the test.6

The unknown piece of information may, however,
be a somewhat more intangible quantity than an indi-
vidual’s true diagnosis—for example, the average
survival benefit of drug A over drug B in a particular
group of patients. Such quantities are not directly
observable in any reasonably sized experiment and are
considered to be unknown variables. Just as the full
evaluation of a diagnostic test requires the prevalence
of the disease to be specified, a bayesian analyst is pre-
pared to make the bold step of specifying a probability
distribution expressing the relative plausibility for this
unknown quantity, before taking into account any evi-
dence from a study. This “prior” distribution can then
be combined with evidence from the study to form a
“posterior” (formally proportional to the product of
the prior and the likelihood function). The box shows
an example.

The posterior distribution provides probabilities of
events of clinical interest and so one could say, for
example, that under specified assumptions “the chance
is 15% that drug A improves average survival by at least
three months over drug B.” This type of statement is
impossible to make within the traditional statistical
framework, in which the interpretation of P values and
confidence intervals depends on rather convoluted

statements concerning the long run properties of
statistical procedures under null hypotheses.

The table briefly summarises some major distinc-
tions between the bayesian and the traditional

Bayes’s theorem after a randomised trial

Pocock and Spiegelhalter7 discuss a small trial of early thrombolytic
treatment in preventing deaths from myocardial infarction, which had
reported a remarkable 49% reduction in mortality.8 On the basis of both
published and unpublished large trials, they argued that if treatment were
provided two hours earlier “a 15-20% reduction in mortality is highly
plausible, while the extremes of no benefit and a 40% reduction are both
unlikely.” This opinion could be represented as a prior distribution as
shown in figure 1(a) , which expresses the relative plausibility arising from
this external evidence.

Figure 1(b) shows the “likelihood” for the true risk reduction arising from
the trial itself, which is simply proportional to the chance of observing the
data (23/148 deaths in controls v 13/163 deaths with active treatment) for
each hypothesised risk reduction. Bayes’s theorem states that the two
sources of evidence can be combined by multiplying the prior and
likelihood curves together and then making the total area under the
resulting curve be equal to l—this is the “posterior” distribution and is
shown in figure 1(c). The evidence in the likelihood has been pulled back
towards the prior opinion, thus formally representing the suspicion that the
trial results were “too good to be true.”

The resulting distribution provides an easily interpretable summary of
the total evidence, and posterior probabilities for hypotheses of interest can
then be read from the graph. For example, the most likely benefit is a
reduction in risk of around 24% (half that observed in the trial), the
posterior probability that the risk is reduced by at least 50% is only 5%, and
a 95% confidence interval is from 43% to 0% risk reduction. Subsequent
experience has reinforced the conclusion of this analysis that it is very
unlikely that home thrombolysis reduces mortality by 50%.

a) Prior distribution

b) Likelihood based on 23/148 v 13/163 deaths

-70 -60 -50 -40

% change in risk in using home treatment

-30 -10-20 +10

c) Posterior distribution

Fig 1 Prior (a), likelihood (b), and posterior (c) distributions arising
from reanalysis by Pocock and Spiegelhalter7 of the GREAT trial of
home thrombolysis.8 The prior distribution represents a summary of
evidence external to the trial, the likelihood expresses evidence from
the trial itself, and the posterior distribution pools these two sources
by multiplying the two curves together
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approach. The latter is sometimes termed “frequentist”
as it is based on the long run frequency properties of
statistical procedures. There are many papers summa-
rising the bayesian philosophy and its application to
randomised trials: Cornfield’s is a notable early
example,9 and other authors have argued for the
flexibility, coherence, and intuitiveness of the
approach.1–3 10 Several authors have highlighted how
the bayesian approach leads naturally into a formal
decision theoretical approach to randomised trials.11

Quantifying prior beliefs
The bayesian approach is most controversial when there
is no hard evidence for the prior distribution and we
have to rely on subjective judgment. This considerably
broadens the area of potential application, although the
reasonableness of the judgments will need to be
justified. The traditional terms prior and posterior may
also be misleading, giving the impression that the prior
has to be fixed before the evidence is examined. It is
more helpful to think of the prior as summarising all
external evidence about the quantity of interest—for
example, other published studies—which might arise
during or after the study that is being considered.

One source of a prior distribution is the pooled
subjective opinion of informed experts, which can be
elicited interactively by using computer programs12 or
questionnaire methods.13 Such opinions should rely on
extensive experience: for example, Peto and Baigent
state that “it is generally unrealistic to hope for large
treatment effects” but that “it might be reasonable to
hope that a new treatment for acute stroke or acute
myocardial infarction could reduce recurrent stroke or
death in hospital from 10% to 9% or 8% . . . but not to
hope that it could halve in-hospital mortality.”14 This
closely mimics the prior opinion used in the box above
to illustrate how extreme results based on small studies
should not be taken at face value. Another source of
prior opinions is, of course, meta-analyses of previous
similar studies.

One important use of a prior distribution is in
planning the sample size of a randomised trial. Instead
of using a single (possibly optimistic) alternative
hypothesis as the basis for the power calculation, the
prior distribution can be used to produce an “expected
power,” taking into account reasonable uncertainty
about the true treatment effect.13

There has been an increasing move towards “off
the shelf” priors—for example, those intended to
represent the opinions of an archetypal “sceptic” and
those of an “enthusiast”15: these can be used to
represent extreme opinions in sensitivity analyses and

in sequential monitoring of trials (see below). One
published example concerns the use of sceptical priors
in determining whether there is sufficient evidence for
a treatment to be generally recommended (box).

Applications in monitoring randomised trials
In the traditional frequentist approach, randomised
trials are designed to have a fixed chance (usually 5%) of
incorrectly rejecting the null hypothesis, and various
techniques have been developed for adjusting the
apparent significance level of a result to allow for the fact
that the data have been analysed more than once. The
bayesian approach sees no need for this and instead
monitors the trial on the basis of the current posterior
distribution, providing an updated summary of the
evidence about the treatment effect at the time of any
analysis. Several monitoring schemes have been
suggested, some of which are based on decision theory.11

The most frequently illustrated technique is simply
based on the “tail” areas of the posterior distribution—

Brief comparison of bayesian and frequentist methods in randomised trials

Issue Frequentist methods Bayesian methods

Prior information other than that in the study
being analysed

Informally used in design Used formally by specifying a prior probability distribution

Interpretation of the parameter of interest A fixed state of nature An unknown quantity which can have a probability distribution

Basic question “How likely is the data, given a particular value of
the parameter?”

“How likely is a particular value of the parameter given the
data?”

Presentation of results Likelihood functions, P values, confidence intervals Plots of posterior distributions of the parameter, calculation
of specific posterior probabilities of interest, and use of the
posterior distribution in formal decision analysis

Interim analyses P values and estimates adjusted for the number of
analyses

Inference not affected by the number or timing of interim
analyses

Interim predictions Conditional power analyses Predictive probability of getting a firm conclusion

Dealing with subsets in trials Adjusted P values (for example, Bonferroni) Subset effects shrunk towards zero by a “sceptical” prior

a) Sceptical prior equivalent to 33 deaths in each group

< equiv: 50.0%
= equiv: 41.4%
> equiv: 8.6%

b) Likelihood: based on observed hazard ratio 1.63 after 120 deaths

< equiv: 0.4%
= equiv: 19.7%
> equiv: 79.9%

c) Posterior distribution

Median survival (months) gained by new treatment

-2 0 2 4 6 8 10 12

< equiv: 1.6%
= equiv: 54.0%
> equiv: 44.4%

Fig 2 Prior, likelihood, and posterior distributions arising from Cancer
and Leukaemia Group B trial of standard radiotherapy versus additional
chemotherapy in advanced lung cancer.15 Dashed lines give boundaries
of range of clinical equivalence, taken to be 0 and 4 months median
improvement in survival. Numbers by each graph show probabilities of
lying below, within, and above the range of equivalence
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for example, stop the trial if the chance that the
treatment is more effective than control is greater than
99%.17 If desired, the probability of the treatment effect
being greater than some clinically important difference
may be used, or, in the case of equivalence studies, that
the treatment difference is less than, say, 10%.

A sceptical prior may be thought of as a handicap
that the trial data must overcome in order to provide
convincing evidence of benefit. In the light of early
positive results, the approach shows a degree of
conservatism which can be remarkably similar to that
of frequentist stopping rules.18 The use of sceptical pri-
ors has been described in a tutorial and in
meta-analyses,19 20 and a senior statistician with the US
Food and Drug Administration has said that he “would
like to see [sceptical priors] applied in more routine
fashion to provide insight into our decision making.”21

The table also considers predictions made at an
interim stage in a randomised trial. Whereas the
frequentist conditional power calculations are based
on a hypothesised value of the true treatment effect, a
bayesian approach can answer a crucial question: if we
continue the study, what is the chance we will get a
significant result?

Multiplicity—estimating the prior
We often wish simultaneously to carry out a set of
related analyses—for example, meta-analysis of of indi-
vidual trial results—allowing for between centre
variability in the analysis of a multicentre trial or
analysing subsets of cases in a single trial. We call these
subanalyses. The traditional frequentist approach tries
to maintain a constant probability of wrongly rejecting
the null hypothesis (type I error) by some adjustment—
for example, a Bonferroni method for multiple
comparisons.

The bayesian approach integrates subanalyses by
assuming that the unknown quantities (for example, the
treatment effects specific to subsets) have a common
prior distribution, with the important difference that this
prior distribution has unknown parameters that need to
be estimated. Such models are known as hierarchical
and can, in theory, have any number of levels, although
three is generally enough. Non-bayesian versions (multi-
level, random effects and random coefficient models)
use either likelihood or “empirical Bayes” approaches to
estimate the model parameters.

By assuming a common prior distribution for each
subanalysis we are expressing scepticism about large
differences in their outcomes, although the precise
degree of similarity is generally considered unknown
and estimated from the data—for example, by measur-
ing the between trial variability in a meta-analysis. Full
bayesian and empirical Bayes approaches can lead to
similar conservatism (box).22

Non-randomised studies and synthesis of evidence
Most authors have concentrated on the application of
bayesian methods when designing randomised trials
or pooling results from published trials, but a small
number of papers have considered applying these
methods to data collected from non-randomised stud-
ies. For example, in a paper analysing data from two
case-control studies (one being very small) and a
cohort study, the authors show the results of using dif-
ferent sources of information for the prior and
likelihood.24 Other authors have discussed the integra-
tion of evidence from several types of non-randomised
studies25 and the integration of findings from both ran-
domised and non-randomised studies within a
bayesian framework.26

Is a confirmatory trial necessary?

Parmar et al illustrate the use of a sceptical prior distribution in deciding
whether or not to perform a confirmatory randomised trial.16 They discuss a
Cancer and Leukaemia Group B trial of radiotherapy and chemotherapy
versus standard radiotherapy in patients with locally advanced stage III
non-small cell lung cancer. This trial showed an adjusted median
improvement in survival of 6.3 months (95% confidence interval 1.4 to 13.3
months) in favour of the new treatment, which has a two sided P value of
0.008. They give two reasons why this might not lead to an immediate
recommendation for radiotherapy and chemotherapy as standard
treatment. Firstly, the toxicity of chemotherapy might mean a minimum
worthwhile improvement is demanded; the authors suggest a figure of
around four months. Secondly, a natural scepticism exists about new cancer
treatments, derived from long experience of failed innovations.

These two aspects can be formalised within the bayesian framework.
Firstly, one can report the probability that the new treatment not only
provides a positive improvement but that this exceeds a minimum clinically
worthwhile improvement. Secondly, scepticism is expressed by a prior
distribution that is centred on zero improvement and shows a 5% chance
that the true improvement is greater than the alternative hypothesis in this
study—namely, that the true improvement is five months.

Figure 2 shows this sceptical prior distribution, which is equivalent
evidence to that of an “imaginary” trial in which 33 patients taking each
treatment died. The dashed vertical lines indicate the null hypothesis of no
improvement and the minimum clinically worthwhile improvement of four
months. Between these lie what can be termed the range of equivalence,
and the figure shows that the sceptical prior expresses a probability of 41%
that the true benefit lies in the range of equivalence and only 9% that the
new treatment is clinically superior.

The likelihood function shows the inferences to be made from the data
alone, assuming a “uniform” prior on the range of possible improvements;
Parmar et al call this an enthusiastic prior. The probability that the new
treatment is actually inferior is 0.4% (equivalent to the one sided P value of
0.008 ÷ 2.) The probability of clinical superiority is 80%, which might be
considered sufficient to change treatment policy.

The posterior distribution shows the impact of the sceptical prior, in that
the chance of clinical superiority is reduced to 44%, hardly sufficient to
change practice. In fact, Parmar et al report that the National Cancer
Institute intergroup trial investigators were unconvinced by the Cancer and
Leukaemia Group B trial due to their previous negative experience, and so
carried out a further study. They found a significant median improvement,
but of only 2.4 months, suggesting that the sceptical approach might have
given a more reasonable estimate.

Performance status: 0-1
Performance status: 2-3
Anaplasia grade: 1-2
Anaplasia grade: 3-4
No measurable disease
Measurable disease
Symptomatic
Not symptomatic
Age <70 years
Age >70 years
Male
Female

-1.5 1.5 2.0-0.5 0.5-1.0 1.00
Standardised treatment effect

Traditional estimates
Bayesian estimates

Fig 3 Traditional and bayesian estimates of standardised treatment
effects in a randomised trial of treatments for cancer. The bayesian
estimates are pulled towards the overall treatment effect by a degree
determined by the empirical heterogeneity of the subset results
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Decision making
Another important feature of a bayesian approach is
the way in which the resulting posterior probability
distribution can be combined with quantitative
measures of utility as part of a formal decision analysis.
As with the elicitation of beliefs regarding probabilities,
the elicitation and quantification of utilities is challeng-
ing, and this is one of the least developed areas of
bayesian analysis. Such formal uses of decision theory
have been applied in health technology assessments in
various settings, including the development of clinical
recommendations for prevention of stroke,27 monitor-
ing and analysis in randomised trials,11 and assessment
of environmental contamination on public health.28

Recommendations
Bayesian analysis is widely used in a variety of non-
medical fields, including engineering, image processing,
expert systems, decision analysis, gene sequencing,
financial predictions, and neural networks, and increas-
ingly in complex epidemiological models. Health
technology assessment has been slow to adopt bayesian
methods; this could be due to a reluctance to use prior
opinions, unfamiliarity, mathematical complexity, lack of
software, or conservatism of the health care establish-
ment and, in particular, the regulatory authorities.

There are strong philosophical reasons for using a
bayesian approach, but the current literature empha-
sises the practical advantages in handling complex
interrelated problems and in making explicit and
accountable what is usually implicit and hidden,
thereby clarifying discussions and disagreements.
Perhaps the most persuasive reason is that the analysis
tells us what we want to know: how should this piece of
evidence change what we currently believe?

The perceived problems with the bayesian
approach largely concern the source of the prior and
the interpretations of the conclusions. There are also
practical difficulties in implementation and software.
Current international guidelines for statistical sub-

missions to drug regulatory authorities state that “the
use of bayesian and other approaches may be
considered when the reasons for their use are clear and
when the resulting conclusions are sufficiently
robust,”29 and it seems sensible that experience should
be gained in the use of bayesian approaches in health
technology assessment in parallel with traditional
approaches, with careful consideration of the sensitiv-
ity of results to prior distributions.

For future practical and methodological develop-
ments, we recommend:
x An extended set of case studies showing practical
aspects of the bayesian approach, in particular for pre-
diction and handling multiple substudies, in which
mathematical details are minimised;
x The development of standards for the performance
and reporting of bayesian analyses;
x The development and dissemination of software for
bayesian analysis, preferably as part of existing
programs.

This article is adapted from Health Services Research Methods: A
Guide to Best Practice, edited by Nick Black, John Brazier, Ray
Fitzpatrick, and Barnaby Reeves, published by BMJ Books.
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Bayes’s theorem for subset analysis

Dixon and Simon describe a bayesian approach to dealing with subset
analysis in a randomised trial in advanced colorectal cancer.23 The solid
horizontal lines in figure 3 show the standardised treatment effects within a
range of subgroups, using traditional methods for estimating treatment by
subgroup interactions. Four of the 12 intervals exclude zero; because
multiple hypotheses are being tested, however, an adjustment technique
such as Bonferroni might be used to decrease the apparent statistical
significance of these findings.

The bayesian approach is to assume that deviations from the overall
treatment effect that are specific to subgroups have a prior distribution
centred at zero but with an unknown variability; this variability is then given
its own prior distribution. Since the degree of scepticism is governed by the
variance of the prior distribution, the observed heterogeneity of treatment
effects between subgroups will influence the degree of scepticism being
imposed.

The resulting bayesian estimates are shown as dashed lines in figure 3.
They tend to be pulled towards each other, owing to the prior scepticism
about substantial interaction effects between subgroups and treatments.
Only one 95% confidence interval now excludes zero, that for the subgroup
with no measurable metastatic disease. Dixon and Simon mention that this
was the conclusion of the original trial; the bayesian analysis has the
advantage of not relying on somewhat arbitrary adjustment techniques as it
can be generalised to any number of subsets, and it provides a unified
means of both providing estimates and tests of hypotheses.

Education and debate
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