The flow through prosthetic heart valves

Roberto Zenit
Instituto de Investigaciones en Materiales
Universidad Nacional Autónoma de México

In collaboration with:
Adriana López (UG), René Ledesma (G),
Prof. Guillermo Pulos (IIM-UNAM)
A. Juárez (Instituto Mexicano de Cardiología)
OUTLINE

1. General Introduction: Heart valve research
2. Fluid Mechanics of Heart Valves
3. Our Experimental Investigation
 – Visualization of flow structures and interpretation
 – Some Ideas for Blood Trauma
4. Foundations for valve design
5. Conclusions
BIOLOGICAL FLOWS

Flow through heart valves
- Flow structure and damage

Fish swimming
Shell selection by crabs

HEAT TRANSFER

Vortex HT enhancement
- Ring-wall collisions

TWO-PHASE FLOWS

Granular flows
- Dry stuff
 - Flow around objects
 - Avalanches
- Wet stuff
 - liq. fluidized beds
 - collisions
 - shear flow

Bubbly flows
- Newtonian stuff
 - Single bubbles
 - Pseudo turbulence
- Non newtonian stuff
 - Single bubbles

Emulsions
- Formation
 - Turbulent-capillary break-up of threads
Heart Research

- 1 million heart surgeries per year worldwide
- 25% are related to failure of valves
- Valve replacements are readily available
- Many unresolved problems…
- Instituto Nacional de Cardiología
 Large scale collaboration project
Heart Valves

Four valves:
Mitral and Tricuspid (inside)
Aortic and Lung (outside)

Two or four leaflets
Prosthetic heart valves

- **Mechanical**
 - caged-ball
 (Starr-Edwards)
 - tilting-disc
 (Medtronic Hall)
 - bileaflet mechanical
 (Saint Jude)

- **Biological**
 - Porcine
 - Bovine

Flexible or rigid

Rigid
Mechanical prosthetic valve

- ✓ Overcome mechanical fatigue
- ✓ Minimize regurgitant volume
- ✓ Bio-compatibility
- ✓ Well studied designs

- ✗ Stagnation & thrombus formation at hinges & pivots
- ✗ Cavitation
- ✗ Unnatural flow → several jets, high shear stress

Biological prosthetic valve

- ✓ Reduce thrombogenic complications
- ✓ Minimize transvalvular pressure drop
- ✓ Mimic native flow → central jet

- ✗ Stenosis → flow occlusion
- ✗ Tissue overgrowth → calcification
- ✗ Mechanical fatigue
- ✗ Manufacture defects
- ✗ Infections
Prosthetic heart valves

• After 40 years ‘these devices are less than ideal and lead to many complications.’
• ‘Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs.’

Yoganathan et al. (2004)
Fluid mechanics issues for heart valve replacements

- **HEMOLYSIS** (Destruction of Blood Cells)
 - Cells ‘break’ as a result of the applied shear and turbulence
 - Stress level and time dependence
 - Not well understood

- **THROMBOSIS** (Formation of blood clots)
 - (Low) wall shear rate
 - Residence time
 - Chemical reaction (properties of contacting surfaces, coagulability and other factors)
 - Less well understood

- **CAVITATION** (Formation and collapse of vapor bubbles)
 - Low pressure zone appear during valve closing (only for mechanical valves)
 - Implosion of bubbles causes cell damage
 - Well understood but poorly studied
Coagulation and Thrombosis

• Complex physico-chemical process
• Hemostasis
• Main elements:
 – Platelets
 – Tissular factor (F III)
 – Coagulation factors (FI –FXII,12 proteins)
Shear induced platelet activation

• Cell lysis is not necessary for platelet activation

• Dependence of strength of ‘shear’ but ALSO on exposure time

![Image of platelet activation under shear stress](image-url)
‘Activation’ of von Willebrand factor (vWF)

Schneider et al. (2007)
‘Local’ effort

• Design and production of bio-mechanical valves

• Bovine pericardium (cheap, good properties)
• Good performance
• But… Mechanical Properties? Durability? Good Performance?
Associated Research Projects in our ‘local’ effort

- Mechanical properties
- Stenosis (rigidization)
- New materials (for leaflets and structure)
- Mechanical Design and Testing
- FLUID MECHANICS
Part 1.
Study of the flow through replacement heart valves

• Quantify the performance of bio-mechanical heart valves.

• Study the complex flow fields that result from the flow-valve interaction.

• Explain why bio- valves are ‘better’ than mechanical valves.

• Contribute to the understanding of blood trauma mechanisms
Experimental setup

Windkessel model
- Pulsatile Pump
- Compliance chamber
- Resistance valve
Several planes (spatial resolution) and phase locking (temporal resolution)
Pressure traces and phase locking times
‘First’ set of 3D results

• Test valves
 – Mechanical bileaflet and monoleaflet
 – Biological tricuspid-type

• Set of conditions
 – Working fluid water
 – Frequency = 24 cycles/min = 0.4 cycles/s
 – Volume displaced = 45 cm3 / cycle
 – 35% systole, 65% diastole

• Phase Locking
 – Five measuring planes downstream from the valve
 – 30 measurements /cycle
 – average over 200 cycles for each field
 – 5x30x200 = 30,000 images per each set of conditions

• Visualization
 – Velocity fields
 – Q-criteria for vortex identification
 (positive second invariant of velocity gradient tensor)
MECHANICAL VALVE

$t/T = 0$

Pressure signal

- Red: downstream pressure
- Blue: upstream pressure
- Green: PIV measurement
Some thoughts about the flow field

- Unsteady, fully three-dimensional, inertial (Re~2500) → visualization and interpretation: not easy

- Measurements → access to all flow quantities

- Phase locking → not ‘proper’ measure of turbulence (approximation)

- Blood cells, nearly neutrally bouyant and small → fluid tracers (very small Stokes number)
Results

Shear Rate

\[\dot{\gamma} = \frac{\dot{\gamma} \cdot \dot{\gamma}}{\gamma} \]

\[\tau = \frac{D}{v_{\text{max}}} \]

\[\dot{\gamma}_{\text{mec}} \approx 200 \text{ s}^{-1} \]

\[\dot{\gamma}_{\text{bio}} \approx 100 \text{ s}^{-1} \]

\[T = \text{time} \quad t = \text{period} \]
Q Criteria

\[Q_{\text{max}} = \left(\| \omega \|^2 - \| \dot{\gamma} \|^2 \right) \]

\[Q = \left(\frac{D}{v_{\text{max}}} \right)^2 \]
Viscous Stresses

Biological

Mechanical

\[\tau = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \]

\[\tau_a = \rho u_{\text{max}}^2 \]
Turbulent Stresses

Biological

Mechanical

\[TT = \rho \bar{v}_i \bar{v}_j \]

\[\tau_a = \rho \bar{v}_{\text{max}}^2 \]
Interpretation

- Magnitude of \textit{viscous and turbulent stresses}, much \textit{lower} than platelet activation threshold
- Magnitude \textit{shear rate} is close to unfolding threshold of the \textit{von Willebrand factor}.
- It is expected that the shear threshold be smaller for a non-simple shear flow
Part 2.
A new generation of heart valves

• synthetic materials?
• physiological-like flow
• long-life good performance
• limited understanding: physical mechanisms which lead to a ‘proper performance’
 – Material properties
 – Leaflet dimensions
 – Fluid-structure interaction

• Research in Progress
Simpler geometry

What is the optimal performance?
 • minimize fluid stresses
 • unidirectional flow

What are the optimal geometric dimensions L, d, h?
What is the optimal material?
Flow parameters

Fixed
0.35 - systolic fraction
C - compliance
R - flow resistance

Dynamic
T - cycle duration
V - stroke volume

\[\rho_f = 1 \times 10^3 \text{ kg/m}^3 \]
\[\mu_f = 1 \times 10^{-3} \text{ Pa \cdot s} \]

\[240 < Re < 960 \]
\[90 < Kc < 250 \]
\[Wi^* \approx 10^{-9} \]
Test different valves: geometries and materials

<table>
<thead>
<tr>
<th>Leaflet</th>
<th>Material</th>
<th>Thickness, (d/h)</th>
<th>Density, (\rho_s) kg/m(^3)</th>
<th>Secant Modulus of Elasticity, (E_s + 1 \times 10^6) kg/m (\cdot) s(^2)</th>
<th>Length, (l/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>Latex</td>
<td>0.027</td>
<td>960</td>
<td>0.83</td>
<td>1.75</td>
</tr>
<tr>
<td>Ne</td>
<td>Neoprene</td>
<td>0.053</td>
<td>1140</td>
<td>2.96</td>
<td>1.75</td>
</tr>
<tr>
<td>Si1</td>
<td>Silicone rubber</td>
<td>0.027</td>
<td>1070</td>
<td>2.15</td>
<td>1.75</td>
</tr>
<tr>
<td>Si2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.75</td>
</tr>
<tr>
<td>Si3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>Si4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.25</td>
</tr>
<tr>
<td>Si5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.50</td>
</tr>
<tr>
<td>Si</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.75</td>
</tr>
</tbody>
</table>

Test different flow conditions: frequency and disp. volume

\[20 \text{ pulses/min} < f < 110 \text{ pulses/min} \]
\[20 \text{ cm}^3 < V < 100 \text{ cm}^3 \]
Velocimetry

Ordinary 2D PIV, with phase locking
Velocity measurements
Valve performance

GOOD

- Uni-directional flow
- ‘Check’ valve

NOT SO GOOD

- Buckling of leaflets
- Flow reversal
Normalization

Characteristic elastic time scale:

\[f_E = \frac{\sqrt{dl}}{\sqrt{E/\rho}} \]

Characteristic volume:

\[V_c = hw l \left(\frac{d}{w} \right) \]
\[f^* = f \left(\frac{d_c}{U_c} \right) \]

\[d_c = \sqrt{dl} \]

\[U_c = \sqrt{\frac{E_s}{\rho_s}} \]

\[V^* = \frac{V}{2hlw} \left(\frac{h}{d} \right) \]
\[f = 20 \text{ pulses/min} \quad V = 45 \text{cm}^3 \]

\[\left| S \right| = \sqrt{S : S^T} \]

\[S = \frac{1}{2} \left[\nabla u + \left(\nabla u \right)^T \right] \]

\[x/h \]

Leaflet
- La
- Ne
- Si
- Si1
- Si2
- Si3
- Si4
- Si5
Normalized strain rate

Scaling?
\[S_p^* = \left| \frac{S}{U_{max}} \right| \frac{d_c}{\overline{d}} \left(\frac{h}{d} \right)^{1/2} \left(\frac{K_c \cdot Wi^*}{Re} \right)^{1/4} \]
Conclusions

• Simple experimental setup
• Found a relation for proper valve performance

\[f^* = f \sqrt{wl} \sqrt{\frac{\rho_s}{E_s}} \quad V^* = \frac{V}{ws/l} \quad f^* \propto \frac{1}{V^*} \]

• Strain rate : flow conditions
• Basis for valve design!
General Conclusions

• Experimental investigation
• Complex flow field past replacement heart valves
• Can determine ‘all’ fluid mechanics characteristics of flow
• Mechanisms for blood trauma
• Propose new set of design parameters
Gracias
Coagulation cascade:

1) Damaged blood vessel wall
2) Exposed subendothelium proteins (collagen)
3) Platelets bind collagen with surface collagen coagulation factors I and II (glycoprotein)
4) Adhesion strengthened further by von Willebrand factor (vWF),
5) Links formed, platelets glycoprotein (Ib/IX/V) and the collagen fibrils. Platelet activation.
• Biol
 • Da=0.018m
 • Umax=1.2512 m/s

• Mec
 • Da=0.017m
 • Umax=0.3262 m/s
Some ideas for hemolysis

Velocity gradients, turbulence

Deformation and eventual breakup

Red Blood Cell
Turbulence or shear?

• Viscous shear stresses

\[\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \]

• Turbulent shear stresses

\[\tau_{ij} = \rho \langle u_i' u_j' \rangle \]
Mechanical valve
Ideas for hemolysis

(borrowed from two-phase flows)

- Forces keeping the cell together:
 \[F_E \sim \kappa d \]

- Viscous forces:
 \[F_\mu \sim \mu | S_{ij} | d^2 \]
 where
 \[S_{ij} = \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \]

- Turbulent forces:
 \[F_t \sim \rho | \langle u'_i u'_j \rangle | d^2 \]

 cell diameter
 \[d = 10 \mu m. \]
Dimensionless numbers

\[Ca^* = \frac{F_\mu}{F_E} = \frac{\mu | S_{ij} | d}{\kappa} \]

\[We^* = \frac{F_t}{F_E} = \frac{\rho | \langle u'_i u'_j \rangle | d}{\kappa} \]
Bubbles break beyond a certain critical turbulent Weber number.
Droplets in extensional/shear flows

Extensional flow

Simple shear flow

Ha and Leal (2001)

Droplets break beyond a certain critical Capillary number.

Marks (1998)
Elastic forces: measurement of κ

Dao et.al (2003)
Dao et.al (2003)

Shear modulus = 13.3 µN/m
Preliminary results

\[Ca^* = \frac{\mu}{\kappa} \left| \frac{S_{ij}}{d} \right| = 10^{-2} \]

\[We^* = \frac{\rho}{\kappa} \left| \frac{\langle u'_i u'_j \rangle}{d} \right| = 10^1 \]
Some ideas for thrombosis

Velocity gradients, turbulence

Deformation, estimulation and activation

Platelet
Falla por fatiga

Carga cíclica

Probeta (pericardio)

$F = F_0 \sin (\omega t)$

Falla
Numero de ciclos

No

Determinar E_0 para inferir N_0

Esfuerzo
Celda de carga

Mordazas

Probeta de PB
Ensayo de Fatiga
MECHANICAL VALVE

t/T = 0.2

SPEED
MECHANICAL VALVE
$t/T = 0.3$

SPEED
Streamwise vorticity
Streamwise vorticity

MECHANICAL VALVE

$z = 0 \text{ mm}$

$z = 7.2 \text{ mm}$

$z = 15.6 \text{ mm}$

$z = 24 \text{ mm}$

$z = 32.4 \text{ mm}$

$z = 40.8 \text{ mm}$

$t/T = 0.3$
MECHANICAL VALVE

$\frac{t}{T} = 0.4$

Streamwise vorticity
‘Turbulent’ intensity

• Variance of velocity in each direction
MECHANICAL VALVE
\(t/T = 0.2 \)

\[\text{\textit{Turbulence}} \]
\[u'^2 + v'^2 + w'^2 \]
MECHANICAL VALVE
\[t/T = 0.3 \]

\[u'^2 + v'^2 + w'^2 \]
MECHANICAL VALVE

$\frac{t}{T} = 0.4$

$z = 0 \text{ mm}$

$z = 7.2 \text{ mm}$

$z = 15.6 \text{ mm}$

$z = 24 \text{ mm}$

$z = 32.4 \text{ mm}$

$z = 40.8 \text{ mm}$

'Turbulence'

$u'^2 + v'^2 + w'^2$
Biological valve (Shear Rate)

\[\gamma \tau = 0.6 \]

[1]
Mechanical valve (Shear Rate)

Diferencia de presiones

\[\gamma \tau = 0.6 \]

[1]
Hemodynamics