%0 Journal Article %J Journal of Computational Social Science %D 2018 %T From neuroscience to computer science: a topical approach on Twitter %A Piña-García, C. A. %A Siqueiros-García, J. Mario %A Robles-Belmont, E. %A Carreón, Gustavo %A Gershenson, Carlos %A López, Julio Amador Díaz %X Twitter is perhaps the most influential microblogging service, with 271 million regular users producing approximately 500 million tweets per day. Previous studies of tweets discussing scientific topics are limited to local surveys or may not be representative geographically. This indicates a need to harvest and analyse tweets with the aim of understanding the level of dissemination of science related topics worldwide. In this study, we use Twitter as case of study and explore the hypothesis of science popularization via the social stream. We present and discuss tweets related to popular science around the world using eleven keywords. We analyze a sample of 306,163 tweets posted by 91,557 users with the aim of identifying tweets and those categories formed around temporally similar topics. We systematically examined the data to track and analyze the online activity around users tweeting about popular science. In addition, we identify locations of high Twitter activity that occur in several places around the world. We also examine which sources (mobile devices, apps, and other social networks) are used to share popular science related links. Furthermore, this study provides insights into the geographic density of popular science tweets worldwide. We show that emergent topics related to popular science are important because they could help to explore how science becomes of public interest. The study also offers some important insights for studying the type of scientific content that users are more likely to tweet. %B Journal of Computational Social Science %V 1 %P 187–208 %@ 2432-2725 %G eng %U https://doi.org/10.1007/s42001-017-0002-9 %R 10.1007/s42001-017-0002-9 %0 Journal Article %J Ecological Complexity %D 2017 %T Complexity of lakes in a latitudinal gradient %A Fernández, Nelson %A Aguilar, José %A Piña-García, C. A. %A Gershenson, Carlos %K Autopoiesis %K Biocomplexity %K Emergence %K Homeostasis %K Information theory %K Self-organization %X Measuring complexity is fast becoming a key instrument to compare different ecosystems at various scales in ecology. To date there has been little agreement on how to properly describe complexity in terms of ecology. In this regard, this manuscript assesses the significance of using a set of proposed measures based on information theory. These measures are as follows: emergence, self-organization, complexity, homeostasis and autopoiesis. A combination of quantitative and qualitative approaches was used in the data analysis with the aim to apply these proposed measures. This study systematically reviews the data previously collected and generated by a model carried out on four aquatic ecosystems located between the Arctic region and the tropical zone. Thus, this research discusses the case of exploring a high level of self-organization in terms of movement, distribution, and quality of water between the northern temperate zone and the tropics. Moreover, it was assessed the significance of the presence of a complex variable (pH) in the middle of the latitudinal transect. Similarly, this study explores the relationship between self-organization and limiting nutrients (nitrogen, phosphorus and silicates). Furthermore, the importance of how a biomass subsystem is affected by seasonal variations is highlighted in this manuscript. This case study seeks to examine the changing nature of how seasonality affects the complexity dynamics of photosynthetic taxa (lakes located in northern temperate zone) at high latitudes, and it also investigates how a high level of self-organization at the tropical zone can lead to increase the amount of planktonic and benthic fish which determines the dynamics of complexity. This research also compares the emerging role of how a biomass subsystem has a highest temporal dynamics compared to he limiting nutrients' subsystem. In the same way, the results associated to autopoiesis reflect a moderate degree of autonomy of photosynthetic biomass. It is also discussed the case of how complexity values change in the middle of the latitudinal gradient for all components. Finally, a comparison with Tsallis information was carried out in order to determine that these proposed measures are more suitable due to they are independent of any other parameter. Thus, this approach considers some elements closely related to information theory which determine and better describe ecological dynamics. %B Ecological Complexity %V 31 %P 1–20 %8 9 %@ 1476-945X %G eng %U http://dx.doi.org/10.1016/j.ecocom.2017.02.002 %R 10.1016/j.ecocom.2017.02.002