Gershenson, C., Pineda, L. A. (2009). Why Does Public Transport Not Arrive on Time? The Pervasiveness of Equal Headway Instability. PLoS ONE 4(10): e7292. DOI:10.1371/journal.pone.0007292.

  1. Steinwidder, P. (2023). Bewertungsverfahren zur Analyse der Reisegeschwindigkeit von Straßenbahnen [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2024.110716
  2. Центральноукраїнський науковий вісник. Технічні науки. 2024. Вип. 9(40), ч.ІІ. DOI: https://doi.org/10.32515/2664-262X.2024.9(40).2.195-203
  3. Ayan, H., Bell, M., & Dissanayake, D. (2025). Investigating the Factors That Influence the Ridership of Light Rail Transit Systems Using Thematic Analysis of Academic Literature. Future Transportation, 5(1), 22. https://doi.org/10.3390/futuretransp5010022
  4. Smith-Onyewu, Z., Stein, M. L., Cortes, J. B., Kim-Christian, P., & Dewey, N. (2025). Public transit and urban community college access. Research in Higher Education, 66(1), 1-29.
  5. Paul Steinwidder. (2024). Evaluation method for the analysis of tram travel speed. Diplom-Ingenieur, TU Wien, Faculty pf Civil and Environmental Engineering. https://web.archive.org/web/20240601110735id_/https://repositum.tuwien.at/bitstream/20.500.12708/193238/1/Steinwidder%20Paul%20-%202024%20-%20Bewertungsverfahren%20zur%20Analyse%20der...pdf
  6. Frederik Reinhard Bachmann. (2023). To Wait or Not to Wait? Redirecting Passengers and Reallocating Capacities During Incidents in Public Transport Systems, Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen Universität München zur Erlangung eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) genehmigten Dissertation. https://mediatum.ub.tum.de/doc/1707338/document.pdf
  7. Calvo Martín M, Rodriguez Palacio E, Deneubourg J-L, Nicolis SC (2023) Emergence and retention of a collective memory in cockroaches. PLoS ONE 18(7): e0287845. https://doi.org/10.1371/journal.pone.0287845
  8. Juarsa, M., Esc, M., Koesmawan, I., & Andriansyah, M. (n.d.). Prof. Ir. Sasi Kirono, MSc. APU. P2m.Upj.Ac.Id. Retrieved February 21, 2023, from https://p2m.upj.ac.id/userfiles/files/Ferdinand Fassa - Semnastek 2017-min.pdf
  9. Ge, L., Voß, S., & Xie, L. (2022). Robustness and disturbances in public transport. Public Transport, 14(1), 191261. https://doi.org/10.1007/S12469-022-00301-8
  10. Khelf, M., Boukebbab, S., & Bhouri, N. (2022). Evaluation of the tram intelligent system management by an analysis of its key performance indicators for an optimal mixed traffic control in Algeria. International Journal of Shipping and Transport Logistics, 14(1-2), 33-55.
  11. Chew, L. Y., Saw, V. L., & Pang, Y. E. I. (2022). Stability of anti-bunched buses and local unidirectional Kuramoto oscillators. In Recent Trends in Chaotic, Nonlinear and Complex Dynamics (pp. 429-454). https://doi.org/10.1142/9789811221903_0016
  12. Bachmann, F. R., Briem, L., Busch, F., & Vortisch, P. (2022). Dynamics and Processes in Operations Control Centers in Urban Public Transport: Potentials for Improvement. IEEE Transactions on Intelligent Transportation Systems. https://ieeexplore.ieee.org/abstract/document/9739126/
  13. Kang, J., Kim, C.-S., Kang, J. W., & Gwak, J. (2022). Recurrent Autoencoder Ensembles for Brake Operating Unit Anomaly Detection on Metro Vehicles. CMC-COMPUTERS MATERIALS \& CONTINUA, 73(1), 114. https://doi.org/10.32604/cmc.2022.023641
  14. Ataeian, S., Solimanpur, M., Amiripour, S. M., & Shankar, R. (2021). Synchronized timetables for bus rapid transit networks in small and large cities. Scientia Iranica, 28(1), 477-491.
  15. Tanida, S. (2021). Dynamic behavior of elevators under random inflow of passengers. Physical Review E, 103(4), 042305. https://doi.org/10.1103/PHYSREVE.103.042305
  16. Theresa-Samuelle Adjaidoo, Emmanuel Kofi Akowuah, A Proposed Ghanaian Intercity Public Transport Departure Scheduling Model based on the Dynamic Rate Leaky Bucket Algorithm,

Scientific African, 2021, e00749, ISSN 2468-2276, https://doi.org/10.1016/j.sciaf.2021.e00749.

  1. Liangpeng Gao, Yue Zheng, Yanjie Ji, Chenghong Fu, Lihai Zhang, "Reliability Analysis of Bus Timetabling Strategy during the COVID-19 Epidemic: A Case Study of Yixing, China", Discrete Dynamics in Nature and Society, vol. 2021, Article ID 6688236, 13 pages, 2021. https://doi.org/10.1155/2021/6688236
  2. Adjaidoo, T. S., & Akowuah, E. K. (2021). A proposed Ghanaian intercity public transport departure scheduling model based on the dynamic rate leaky bucket algorithm. Scientific African, 12, e00749.
  3. Nabil Morri, Sameh Hadouaj and Lamjed Ben Said, An approach to intelligent Control Public Transportation System Using Multi-agent System, J. Filipe et al. (Eds): ICEIS 2020, LNBIP 417. Pp. 242-267, 2021. Doi://doi.org/10.1007/978-3-030-75418-1_12.
  4. Ren, Y., Zhao, J., & Zhou, X. (2021). Optimal design of scheduling for bus rapid transit by combining with passive signal priority control. International Journal of Sustainable Transportation, 15(5), 407-418.
  5. Khelf, M., & Boukebbab, S. (2021). Contribution à létude de la congestion et la régulation du trafic routier pour lévaluation de la circulation en milieu urbain (Doctoral dissertation, جامعة الإخوة منتوري قسنطينة).‎
  6. Quek, W. L., Chung, N. N., Saw, V. L., & Chew, L. Y. (2021). Analysis and Simulation of Intervention Strategies against Bus Bunching by means of an Empirical Agent-Based Model. Complexity, 2021. https://doi.org/10.1155/2021/2606191
  7. Saw, V. L., Vismara, L., & Chew, L. Y. (2021). Chaotic semi-express buses in a loop. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(2), 023122.
  8. Kang, J., Kim, C. S., Kang, J. W., & Gwak, J. (2021). Anomaly Detection of the Brake Operating Unit on Metro Vehicles Using a One-Class LSTM Autoencoder. Applied Sciences, 11(19), 9290. https://doi.org/10.3390/app11199290
  9. Frères, U., & Constantine -, M. (2021). Contribution à létude de la congestion et la régulation du trafic routier pour lévaluation de la circulation en milieu urbain. http://archives.umc.edu.dz/handle/123456789/6369
  10. Jarabo-Penas, A., … P. Z.-2020 I., & 2020, undefined. (n.d.). Headway estimation in urban buses based on available arrival time estimators. Ieeexplore.Ieee.Org. Retrieved February 21, 2023, from https://ieeexplore.ieee.org/abstract/document/9457912/
  11. N. Morri, S. Hadouaj, and L. Ben Said, “Towards an Intelligent control system for public transport traffic efficiency KPIs optimization,” in Proceedings of 2020 Global Mosharaka Congress on Electrical Engineering, GC-ElecEng 2020, 2020, pp. 3337.
  12. Moosavi, S. M. H., Ismail, A., & Yuen, C. W. (2020). Using simulation model as a tool for analyzing bus service reliability and implementing improvement strategies. PLoS ONE, 15(5). https://doi.org/10.1371/journal.pone.0232799
  13. J. Monzer and H. Qader, “Using digital technology to help users of public transportation to cope when experiencing lack of control,” 2020. https://research.cbs.dk/files/62189158/901214_Master_Thesis_Qader_Monzer.pdf
  14. Dailisan, D. N., & Lim, M. T. (2020). Crossover transitions in a buscar mixed-traffic cellular automata model. Physica A: Statistical Mechanics and Its Applications, 557. https://doi.org/10.1016/j.physa.2020.124861
  15. N. Anwar, R. Rasjidin, D. Stephanus Najoan, C. Rolando, and H. Leslie Hendric Spits Warnars, “E-payment for Jakarta Smart Public Transportation, Using the Point System for E-Commerce,” J. Phys. Conf. Ser., vol. 1477, no. 2, p. 22035, 2020.
  16. S. Tanida, “Dynamic behavior and its typical time of elevators under the random inflow of passengers,” Dec. 2020. http://arxiv.org/abs/2012.12571
  17. Morri, N., Hadouaj, S., & Ben Said, L. (2020). Intelligent regulation system to optimize the service performance of the public transport. ICEIS 2020 - Proceedings of the 22nd International Conference on Enterprise Information Systems, 1, 416427. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090773032&partnerID=40&md5=ceb8e8e0b23ba9d6f511b056146fa31e
  18. Sánchez-Atondo, A., García, L., Calderón-Ramírez, J., Gutiérrez-Moreno, J. M., & Mungaray-Moctezuma, A. (2020). Understanding public transport ridership in developing countries to promote sustainable urban mobility: A case study of Mexicali, Mexico. Sustainability (Switzerland), 12(8). https://doi.org/10.3390/SU12083266
  19. Napiah, M., & Yaakub, N. (2010). 49 PRELIMINARY ASSESSMENT ON RELIABILITY OF PUBLIC BUS SERVICE IN KOTA BHARU. researchgate.net. Retrieved from http://www.cityliner.com.my/
  20. Wang, T. (2014). A FlexiFare Bus (F2B) System to Reduce Bus Bunching Problem. In Wang, Y and Li, X and Cai, H (Ed.), PROCEEDINGS OF 2014 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC) (pp. 651655).
  21. Andres, M., & Nair, R. (2017). A predictive-control framework to address bus bunching. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 104, 123148. https://doi.org/10.1016/j.trb.2017.06.013
  22. Moreira-Matias, L., Gama, J., Mendes-Moreira, J., & de Sousa, J. F. (2014). An Incremental Probabilistic Model to Predict Bus Bunching in Real-Time. In Blockeel, H and VanLeeuwen, M and Vinciotti, V (Ed.), ADVANCES IN INTELLIGENT DATA ANALYSIS XIII (Vol. 8819, pp. 227238).
  23. Ismail, A., & Hafezi, M. H. (2011). Analyzing of bus operation to obtain regular frequency for neo-mission. Australian Journal of Basic and Applied Sciences, 5(11), 12751284. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84155185262&partnerID=40&md5=faf5890857dd547a6cb03757b642d3f3
  24. Park, Y., Mount, J., Liu, L., Xiao, N., & Miller, H. J. (2020). Assessing public transit performance using real-time data: spatiotemporal patterns of bus operation delays in Columbus, Ohio, USA. International Journal of Geographical Information Science, 34(2), 367392. https://doi.org/10.1080/13658816.2019.1608997
  25. Saw, VL., Chung, N.N., Quek, W.L. et al. Bus bunching as a synchronisation phenomenon. Sci Rep 9, 6887 (2019). https://doi.org/10.1038/s41598-019-43310-7
  26. Moreira-Matias, L., Ferreira, C., Gama, J., Mendes-Moreira, J., & De Sousa, J. F. (2012). Bus bunching detection by mining sequences of headway deviations. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7377 LNAI, 7791. https://doi.org/10.1007/978-3-642-31488-9_7
  27. Moreira-Matias, L., Ferreira, C., Gama, J., Mendes-Moreira, J., & De Sousa, J. F. (2012). Bus Bunching detection: A sequence mining approach. In CEUR Workshop Proceedings (Vol. 960, pp. 1317). Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84924351383&partnerID=40&md5=af00731b7f75bc3abda2fe3e4c9adb2d
  28. Al-Mansob, R. (2011). BUS SCHEDULING MODEL: A LITERATURE REVIEW. researchgate.net. Retrieved from https://www.researchgate.net/publication/260034430
  29. Hafezi, M. H., Ismail, A., & Shariff, A. A. (2012). Comparative analysis of fare collection system on bus operations. Journal of Applied Sciences, 12(4), 393397. https://doi.org/10.3923/jas.2012.393.397
  30. Nagatani, T. (2011). Complex motion in nonlinear-map model of elevators in energy-saving traffic. PHYSICS LETTERS A, 375(20), 20472050. https://doi.org/10.1016/j.physleta.2011.04.006
  31. Nagatani, T. (2015). Complex motion induced by elevator choice in peak traffic. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 436, 159169. https://doi.org/10.1016/j.physa.2015.05.045
  32. Nagatani, T. (2013). Complex motion of elevators in piecewise map model combined with circle map. PHYSICS LETTERS A, 377(3436), 20472051. https://doi.org/10.1016/j.physleta.2013.06.027
  33. Heylighen, F. (n.d.). Complexe Adaptieve Steden: een platform voor zelforganisatie. Academia.Edu. Retrieved from http://www.academia.edu/download/56454539/CASteden.pdf
  34. Portugali, J. (2012). Complexity Theories of Cities Have Come of Age An Overview with Implications to Urban Planning and Design. Complexity Theories of Cities Have Come of Age. Retrieved from  https://books.google.com/books?hl=en&lr=&id=fgcOKiKQhXoC&oi=fnd&pg=PR5&ots=K3Ir7hUQx7&sig=7rWZUsrZnxOvtDwUHK9JwiyxGIo
  35. Haesevoets, S. (2019). De impact van vertragingen bij het openbaar vervoer in een geïntegreerd mobiliteitssysteem.
  36. Sisay Mitiku Advisor Getachew Alemu, B. (2014). Decentralized M otion Coordination Method Design using CO-FIELD Approach of SWARM AI metaheuristics for Improving the Reliability of Bus Transit System. Retrieved from http://213.55.95.56/handle/123456789/4810
  37. Nagatani, T. (2012). Delay effect on schedule in shuttle bus transportation controlled by capacity. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 391(11), 32663276. https://doi.org/10.1016/j.physa.2012.01.052
  38. Höning, N., & La Poutré, H. (2010). Designing comprehensible self-organising systems. In Proceedings - 2010 4th IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2010 (pp. 233242). https://doi.org/10.1109/SASO.2010.18
  39. Shaharudin, M. R., Zainoddin, A. I., Akbar, J., Abdullah, D., & Saifullah, N. H. (2018). Determinants of the passengers Light Rail Transit usage in the Klang Valley Malaysia. International Journal of Supply Chain Management, 7(6), 231241. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060884398&partnerID=40&md5=76ed791f0c8e9c845ccfa7fbc8ceb749
  40. Shaharudin, M. R., Zainoddin, A. I., Akbar, J., Abdullah, D., & Saifullah, N. H. (2018). Determinants of the passengers Light Rail Transit usage in the Klang Valley Malaysia. International Journal of Supply Chain Management, 7(6), 231241. Retrieved from https://www.researchgate.net/publication/330998724
  41. Hickey, A., Nuworsoo, C., & Pangilinan, C. (2014). Dynamic dispatch with advanced train control system data. Transportation Research Record, 2415, 3547. https://doi.org/10.3141/2415-04
  42. Hickey, A. M., Nuworsoo, C., & Pangilinan, C. A. (2014). Dynamic Dispatch with Advanced Train Control System Data Application to Muni Metro Light Rail Vehicles Departing Embarcadero Station in San Francisco, California. TRANSPORTATION RESEARCH RECORD, (2415), 3547. https://doi.org/10.3141/2415-04
  43. Nagatani, T. (2013). Dynamics in two-elevator traffic system with real-time information. PHYSICS LETTERS A, 377(4548), 32963299. https://doi.org/10.1016/j.physleta.2013.10.020
  44. Nagatani, T. (2013). Dynamics in two-elevator traffic system with real-time information. Physics Letters, Section A: General, Atomic and Solid State Physics, 377(4548), 32963299. https://doi.org/10.1016/j.physleta.2013.10.020
  45. Nagatani, T., & Tobita, K. (2012). Effect of periodic inflow on elevator traffic. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 391(18), 43974405. https://doi.org/10.1016/j.physa.2012.04.013
  46. Nagatani, T. (2016). Effect of stopover on motion of two competing elevators in peak traffic. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 444, 613621. https://doi.org/10.1016/j.physa.2015.10.062
  47. Quek, W. (2019). From cellular automata to agent-based models: addressing urban issues. Retrieved from https://dr.ntu.edu.sg/handle/10356/136755
  48. Pi, X., Egge, M., Whitmore, J., Qian, Z., & Silbermann, A. (2018). Immigration, Income, and Public Transit Perceptions: Findings from an Intercept Survey Journal of Public Transportation | scholarcommons. Journal of Public Transportation, 21(2), 1940. https://doi.org/10.5038/2375-0901.21.2.2
  49. Ramli, M. A., Jayaraman, V., Ping, L. Z., Huijia, J. L., Ding, T. W., Khoon, G. L. K., … Heong, T. K. (2016). IMPACT OF COMMUTER FLUCTUATIONS ON THE HEADWAY REGULARITY OF PUBLIC BUSES IN SINGAPORE. SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 7(1), 919.
  50. Ramli, M. A., Jayaraman, V., Kwek, H. C., Tan, K. H., Lee Kee Khoon, G., & Monterola, C. (2018). Improved estimation of commuter waiting times using headway and commuter boarding information. Physica A: Statistical Mechanics and Its Applications, 501, 217226. https://doi.org/10.1016/j.physa.2017.12.022
  51. Barbeito, G. (2019). In-Depth Behavior Modeling of Transportation Networks: Description and Preliminary Results of a Subway Network Model. In Proceedings of the 52nd Hawaii International Conference on System Sciences. https://doi.org/10.24251/hicss.2019.148
  52. Ge, S. G., Ding, Z. J., Jiang, R., Shi, Q., Kühne, R., Long, J., … Wang, B. H. (2016). Influence of synchronized traffic light on the states of bus operating system. Physica A: Statistical Mechanics and Its Applications, 453, 923. https://doi.org/10.1016/j.physa.2016.02.045
  53. Ge, S.-G., Ding, Z.-J., Jiang, R., Shi, Q., Kuhne, R., Long, J., … Wang, B.-H. (2016). Influence of synchronized traffic light on the states of bus operating system. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 453, 923. https://doi.org/10.1016/j.physa.2016.02.045
  54. Asadallah Najafi. (2012). Knowledge worker productivity measurement using fuzzy analytical network process (FANP). Scientific Research and Essays, 7(31), 28742881. https://doi.org/10.5897/sre11.551
  55. Peng, D., & Dabek, F. (2019). Large-scale incremental (123) processing using distributed transactions and notifications. In Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2010 (pp. 251264). Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076901170&partnerID=40&md5=94cc8bda77bb9b495ccc64de57f82506
  56. Stein, M. L., & Grigg, J. A. (2019). Missing Bus, Missing School: Establishing the Relationship Between Public Transit Use and Student Absenteeism. AMERICAN EDUCATIONAL RESEARCH JOURNAL, 56(5), 18341860. https://doi.org/10.3102/0002831219833917
  57. Nagatani, T. (2013). Modified circle map model for complex motion induced by a change of shuttle buses. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 392(16), 33923401. https://doi.org/10.1016/j.physa.2013.03.064
  58. Pi, X., & Systems, A. I. (2019). Multi-modal Mesoscopic Transportation System Modeling and Management with Mobility Data. Retrieved from https://kilthub.cmu.edu/ndownloader/files/17435798
  59. Saw, V. L., & Chew, L. Y. (2020). No-boarding buses: Agents allowed to cooperate or defect. Journal of Physics: Complexity, 1(1). https://doi.org/10.1088/2632-072X/ab4af5

https://arxiv.org/abs/1906.12110

  1. Saw, V. L., & Chew, L. Y. (2020). No-boarding buses: Synchronisation for efficiency. PLoS ONE, 15(3). https://doi.org/10.1371/JOURNAL.PONE.0230377
  2. Nagatani, T. (2013). Nonlinear-map model for bus schedule in capacity-controlled transportation. APPLIED MATHEMATICAL MODELLING, 37(4), 18231835. https://doi.org/10.1016/j.apm.2012.04.049
  3. Nagatani, T. (2013). Nonlinear-map model for the control of an airplane schedule. Physica A: Statistical Mechanics and Its Applications, 392(24), 65456553. https://doi.org/10.1016/j.physa.2013.08.076
  4. Moreira-Matias, L. (2014). On Improving Operational Planning and Control in Public Transportation Networks using Streaming Data: A Machine Learning Approach. In Proc European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - ECML/PKDD (pp. 4150). Retrieved from https://repositorio-aberto.up.pt/bitstream/10216/78918/2/34998.pdf
  5. Ren, Y., Zhao, J., & Zhou, X. (2020). Optimal design of scheduling for bus rapid transit by combining with passive signal priority control. International Journal of Sustainable Transportation, 112. https://doi.org/10.1080/15568318.2020.1740954
  6. Ambridge, B. (2014). Psy-Q: You know your IQ - now test your psychological intelligence.
  7. Yaakub, N., & Napiah, M. (2011). Quality of Service and Passenger s Perception A Review on Bus Service in Kota Bharu. Quality of Service and Passenger s Perception A Review on Bus Service in Kota Bharu, 11(October), 19. Retrieved from https://www.researchgate.net/publication/277848578
  8. Villalobos, J., Munoz, V., Rogan, J., Zarama, R., Johnson, N. F., Toledo, B., & Alejandro Valdivia, J. (2014). Regular transport dynamics produce chaotic travel times. PHYSICAL REVIEW E, 89(6). https://doi.org/10.1103/PhysRevE.89.062922
  9. Nagatani, T., & Naito, Y. (2011). Schedule and complex motion of shuttle bus induced by periodic inflow of passengers. PHYSICS LETTERS A, 375(41), 35793582. (13https://doi.org/10.1016/j.physleta.2011.08.028
  10. Kuzkin, O. (2015). Service regularity investigation of fixed-route taxi during on-peak hours. Eastern-European Journal of Enterprise Technologies, 5(3), 1422. https://doi.org/10.15587/1729-4061.2015.51361
  11. Hafezi, M. H., & Ismail, A. (2011). Study behaviour of passengers on transit operation. Applied Mechanics and Materials, 9798, 11541157. https://doi.org/10.4028/www.scientific.net/AMM.97-98.1154
  12. Ataeian, S., Solimanpur, M., Amiripour, M., & Shankar, R. (2019). Synchronized Timetables for Bus Rapid Transit Networks in Small and Large Cities. Scientia Iranica, 00. https://doi.org/10.24200/sci.2019.51501.2220
  13. Lee, N.-J., & Kang, C.-G. (2015). The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle. PLOS ONE, 10(8). https://doi.org/10.1371/journal.pone.0135459 (142)
  14. Cities, G., & Infrastructure, G. (2016). THE PURSUIT OF LEGIBLE POLICY: Retrieved from http://www.academia.edu/download/45496880/Lockton_2016_Designing_Agency_In_The_City.pdf
  15. Pi, X., Egge, M., Whitmore, J., Qian, Z. (Sean), & Silbermann, A. (2018). Understanding Transit System Performance Using AVL-APC Data: An Analytics Platform with Case Studies for the Pittsburgh Region. JOURNAL OF PUBLIC TRANSPORTATION, 21(2), 1940. https://doi.org/10.5038/2375-0901.21.2.2
  16. José Narro Robles, R., Alicia Ziccardi Contigiani, D., Arsenio González Reynoso, M. E., Manuel Vidrio Carrasco, A. C., Isela Orihuela Jurado, M. E., Oscar Torres, M., … Suárez Lastra, M. (n.d.). UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COORDINACIÓN DE HUMANIDADES PROGRAMA UNIVERSITARIO DE ESTUDIOS SOBRE LA CIUDAD Coordinación e integración de la Evaluación Equipo de evaluación interdisciplinaria. andreslajous.blogs.com. Retrieved from https://andreslajous.blogs.com/files/evaluacion-transporte-publico-df_puec_2011.pdf
  17. Hickey, A. M. (2013). UTILIZING ATCS DATA TO INFORM A DYNAMIC REASSIGNMENT SYSTEM FOR MUNI METRO LIGHT RAIL VEHICLES DEPARTING EMBARCADERO STATION A Professional Project presented to. Retrieved from https://digitalcommons.calpoly.edu/theses/1081/
  18. Halse, A. H., & Killi, M. (n.d.). Verdsetting av pålitelighet i samfunnsøkonomiske analyser-PUSAM teorigrunnlag. In toi.no. Retrieved from https://www.toi.no/getfile.php/Publikasjoner/TØI rapporter/2010/1103-2010/1103-2010-elektronisk.pdf
  19. передовых, О. К.-В.-Е. журнал, & 2015, undefined. (n.d.). Дослідження регулярності руху маршрутних таксі у пікові години доби. Irbis-Nbuv.Gov.Ua. https://doi.org/10.15587/1729-4061.2015.51361


CITAS DE CO-AUTORES

  1. Sánchez-Puig, F., Zapata, O., Pineda, O. K., Iñiguez, G., & Gershenson, C. Heterogeneity extends criticality (2023). Frontiers in Complex Systems, Vol 1, 2023. https://doi.org/10.3389/fcpxs.2023.1111486
  2. Gershenson, C. (2020). Guiding the Self-Organization of Cyber-Physical Systems. Frontiers in Robotics and AI, 7. https://doi.org/10.3389/frobt.2020.00041
  3. Gershenson, C., & Helbing, D. (2015). When slower is faster. Complexity, 21(2), 915. https://doi.org/10.1002/cplx.21736
  4. Gershenson, C. (2011). Self-Organization Leads to Supraoptimal Performance in Public Transportation Systems. PLOS ONE, 6(6). https://doi.org/10.1371/journal.pone.0021469
  5. Gershenson, C. (2012). Self-Organizing Urban Transportation Systems. In Complexity Theories of Cities Have Come of Age (pp. 269279). https://doi.org/10.1007/978-3-642-24544-2_15
  6. Gershenson, C. (2013). Living in Living Cities. Artificial Life, 19(3_4), 401420. https://doi.org/10.1162/artl_a_00112
  7. Gershenson, C. (2019). Guiding the Self-organization of Cyber-Physical Systems. arxiv.org. Retrieved from http://turing.iimas.unam.mx/~cgg
  8. Carreon, G., Gershenson, C., & Pineda, L. A. (2017). Improving public transportation systems with self-organization: A headway-based model and regulation of passenger alighting and boarding. PLOS ONE, 12(12). https://doi.org/10.1371/journal.pone.0190100
  9. Gershenson, C. (2016). Improving Urban Mobility by Understanding its Complexity. Arxiv.Org. Retrieved from https://arxiv.org/abs/1603.04267