Luis A. Pineda, Lisset Salinas, Ivan V. Meza, Caleb Rascon and Gibran Fuentes (2013). SitLog: A Programming Language for Service Robot Tasks, Int J Adv Robot Syst. 10:358. 12 pp. DOI: 10.5772/56906. ISSN: 1729-8806; eISSN: 1729-8814
- Costinescu, A, Figueredo, L, & ... (2025). A Knowledge Modeling Framework for Household Action Recognition and Task Representation: The Concept Hierarchy. AI, Computer Science Robotic Technology, intechopen.com, https://www.intechopen.com/journals/1/articles/545.
- Meli, D., Nakawala, H. & Fiorini, P. Logic programming for deliberative robotic task planning. Artif Intell Rev (2023). https://doi.org/10.1007/s10462-022-10389-w
- Basiri, M., Pereira, J., Bettencourt, R., Piazza, E., Fernandes, E., Azevedo, C., & Lima, P. (2022). Functionalities, Benchmarking System and Performance Evaluation for a Domestic Service Robot: People Perception, People Following, and Pick and Placing. Applied Sciences, 12(10), 4819. https://doi.org/10.3390/app12104819
- R. Valner, S. Wanna, K. Kruusamäe, M. Pryor, “Unified Meaning Representation Format (UMRF) -A Task Descriptopm amd Execution Formalims for HRI, ACM Trans. Human-Robot Interact. p. 1-26, 2022. https://dl.acm.org/doi/pdf/10.1145/3522580.
- Landsberger, S., & Mitch Pryor, S. (2021). Creating a low resource semantic parser for the unified meaning representation format. https://repositories.lib.utexas.edu/handle/2152/87273
- Wanna, S. L. (2021). Creating a low resource semantic parser for the unified meaning representation format (Doctoral dissertation).
- Mao, X., Huang, H., & Wang, S. (2020). Software Engineering for Autonomous Robot: Challenges, Progresses and Opportunities. 2020 27TH ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC 2020), 100–108. https://doi.org/10.1109/APSEC51365.2020.00018
- S. Yang, X. Mao, Y. Chen, and S. Yang, “A multi-agent organization approach fodeveloping social-technical software of autonomous robots,” in Communications in Computer and Information Science, 2016, vol. 623, pp. 24–38.
- Basiri, M., Piazza, E., Matteucci, M., & Lima, P. (2019). Benchmarking Functionalities of Domestic Service Robots Through Scientific Competitions. KUNSTLICHE INTELLIGENZ, 33(4, SI), 357–367. https://doi.org/10.1007/s13218-019-00619-9
- Liu, Z., Mao, X., & Yang, S. (2018). AutoRobot: A multi-agent software framework for autonomous robots. IEICE Transactions on Information and Systems, E101D(7), 1880–1893. https://doi.org/10.1587/transinf.2017EDP7382
- Yang, S., Mao, X., Ge, B., & Yang, S. (2016). The roadmap and challenges of robot programming languages. In Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015 (pp. 328–333). https://doi.org/10.1109/SMC.2015.69
- Yang, S., Mao, X., Ge, B., & Yang, S. (2016). The Roadmap and Challenges of Robot Programming Languages Crowdsourcing-based development and learning View project AutoRobot Framework View project The Roadmap and Challenges of Robot Programming Languages. Ieeexplore.Ieee.Org. https://doi.org/10.1109/SMC.2015.69
- Mehmood, T., Hashmi, U., Akhter, A., & Ajmal, A. (2015). Techniques and Approaches in Robocup @ Home - A Review. In 2015 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES (ICICT).
- Seib, V., Manthe, S., Memmesheimer, R., Polster, F., & Paulus, D. (2015). Team homer@unikoblenz — Approaches and contributions to the robocup@home competition. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9513, pp. 83–94). Springer Verlag. https://doi.org/10.1007/978-3-319-29339-4_7
- A. Angelos, “Data modelling and algorithms for symbiotic assembly operations,” 2016.
- Argyrou, A., Giannoulis, C., Papakostas, N., & Chryssolouris, G. (2016). A Uniform Data Model for Representing Symbiotic Assembly Stations. In Procedia CIRP (Vol. 44, pp. 85–90). https://doi.org/10.1016/j.procir.2016.02.087
CITAS DE CO-AUTORERS
- Rascon, C., & Meza, I. (2017). Localization of sound sources in robotics: A review. Robotics and Autonomous Systems, 96, 184–210. https://doi.org/10.1016/j.robot.2017.07.011