
The setup for measuring the SHG is described

in the supporting online material (22). We expect

that the SHG strongly depends on the resonance

that is excited. Obviously, the incident polariza-

tion and the detuning of the laser wavelength

from the resonance are of particular interest. One

possibility for controlling the detuning is to

change the laser wavelength for a given sample,

which is difficult because of the extremely broad

tuning range required. Thus, we follow an

alternative route, lithographic tuning (in which

the incident laser wavelength of 1.5 mm, as well

as the detection system, remains fixed), and tune

the resonance positions by changing the SRR

size. In this manner, we can also guarantee that

the optical properties of the SRR constituent

materials are identical for all configurations. The

blue bars in Fig. 1 summarize the measured SHG

signals. For excitation of the LC resonance in Fig.

1A (horizontal incident polarization), we find

an SHG signal that is 500 times above the noise

level. As expected for SHG, this signal closely

scales with the square of the incident power

(Fig. 2A). The polarization of the SHG emission

is nearly vertical (Fig. 2B). The small angle with

respect to the vertical is due to deviations from

perfect mirror symmetry of the SRRs (see

electron micrographs in Fig. 1). Small detuning

of the LC resonance toward smaller wavelength

(i.e., to 1.3-mm wavelength) reduces the SHG

signal strength from 100% to 20%. For ex-

citation of the Mie resonance with vertical

incident polarization in Fig. 1D, we find a small

signal just above the noise level. For excitation

of the Mie resonance with horizontal incident

polarization in Fig. 1C, a small but significant

SHG emission is found, which is again po-

larized nearly vertically. For completeness, Fig.

1B shows the off-resonant case for the smaller

SRRs for vertical incident polarization.

Although these results are compatible with

the known selection rules of surface SHG from

usual nonlinear optics (23), these selection rules

do not explain the mechanism of SHG. Follow-

ing our above argumentation on the magnetic

component of the Lorentz force, we numerically

calculate first the linear electric and magnet-

ic field distributions (22); from these fields,

we compute the electron velocities and the

Lorentz-force field (fig. S1). In the spirit of a

metamaterial, the transverse component of the

Lorentz-force field can be spatially averaged

over the volume of the unit cell of size a by a

by t. This procedure delivers the driving force

for the transverse SHG polarization. As usual,

the SHG intensity is proportional to the square

modulus of the nonlinear electron displacement.

Thus, the SHG strength is expected to be

proportional to the square modulus of the

driving force, and the SHG polarization is

directed along the driving-force vector. Cor-

responding results are summarized in Fig. 3 in

the same arrangement as Fig. 1 to allow for a

direct comparison between experiment and

theory. The agreement is generally good, both

for linear optics and for SHG. In particular, we

find a much larger SHG signal for excitation of

those two resonances (Fig. 3, A and C), which

are related to a finite magnetic-dipole moment

(perpendicular to the SRR plane) as compared

with the purely electric Mie resonance (Figs.

1D and 3D), despite the fact that its oscillator

strength in the linear spectrum is comparable.

The SHG polarization in the theory is strictly

vertical for all resonances. Quantitative devia-

tions between the SHG signal strengths of ex-

periment and theory, respectively, are probably

due to the simplified SRR shape assumed in

our calculations and/or due to the simplicity of

our modeling. A systematic microscopic theory

of the nonlinear optical properties of metallic

metamaterials would be highly desirable but is

currently not available.
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Reducing the Dimensionality of
Data with Neural Networks
G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such ‘‘autoencoder’’ networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

D
imensionality reduction facilitates the

classification, visualization, communi-

cation, and storage of high-dimensional

data. A simple and widely used method is

principal components analysis (PCA), which

finds the directions of greatest variance in the

data set and represents each data point by its

coordinates along each of these directions. We

describe a nonlinear generalization of PCA that

uses an adaptive, multilayer Bencoder[ network

Fig. 3. Theory, presented as the experiment (see
Fig. 1). The SHG source is the magnetic compo-
nent of the Lorentz force on metal electrons in
the SRRs.
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to transform the high-dimensional data into a

low-dimensional code and a similar Bdecoder[
network to recover the data from the code.

Starting with random weights in the two

networks, they can be trained together by

minimizing the discrepancy between the orig-

inal data and its reconstruction. The required

gradients are easily obtained by using the chain

rule to backpropagate error derivatives first

through the decoder network and then through

the encoder network (1). The whole system is

called an Bautoencoder[ and is depicted in

Fig. 1.

It is difficult to optimize the weights in

nonlinear autoencoders that have multiple

hidden layers (2–4). With large initial weights,

autoencoders typically find poor local minima;

with small initial weights, the gradients in the

early layers are tiny, making it infeasible to

train autoencoders with many hidden layers. If

the initial weights are close to a good solution,

gradient descent works well, but finding such

initial weights requires a very different type of

algorithm that learns one layer of features at a

time. We introduce this Bpretraining[ procedure

for binary data, generalize it to real-valued data,

and show that it works well for a variety of

data sets.

An ensemble of binary vectors (e.g., im-

ages) can be modeled using a two-layer net-

work called a Brestricted Boltzmann machine[
(RBM) (5, 6) in which stochastic, binary pixels

are connected to stochastic, binary feature

detectors using symmetrically weighted con-

nections. The pixels correspond to Bvisible[
units of the RBM because their states are

observed; the feature detectors correspond to

Bhidden[ units. A joint configuration (v, h) of

the visible and hidden units has an energy (7)

given by

Eðv, hÞ 0 j
X

iZpixels

bivi j
X

jZfeatures

bjhj

j
X

i, j

vihjwij

ð1Þ

where v
i
and h

j
are the binary states of pixel i

and feature j, b
i
and b

j
are their biases, and w

ij

is the weight between them. The network as-

signs a probability to every possible image via

this energy function, as explained in (8). The

probability of a training image can be raised by
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Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the ‘‘data’’ for training the next RBM in the stack. After the pretraining, the RBMs are
‘‘unrolled’’ to create a deep autoencoder, which is then fine-tuned using backpropagation of
error derivatives.

Fig. 2. (A) Top to bottom:
Random samples of curves from
the test data set; reconstructions
produced by the six-dimensional
deep autoencoder; reconstruc-
tions by ‘‘logistic PCA’’ (8) using
six components; reconstructions
by logistic PCA and standard
PCA using 18 components. The
average squared error per im-
age for the last four rows is
1.44, 7.64, 2.45, 5.90. (B) Top
to bottom: A random test image
from each class; reconstructions
by the 30-dimensional autoen-
coder; reconstructions by 30-
dimensional logistic PCA and
standard PCA. The average
squared errors for the last three
rows are 3.00, 8.01, and 13.87.
(C) Top to bottom: Random
samples from the test data set;
reconstructions by the 30-
dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.
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adjusting the weights and biases to lower the

energy of that image and to raise the energy of

similar, Bconfabulated[ images that the network

would prefer to the real data. Given a training

image, the binary state h
j
of each feature de-

tector j is set to 1 with probability s(b
j
þP

i
v
i
w
ij
), where s(x) is the logistic function

1/E1 þ exp (–x)^, b
j
is the bias of j, v

i
is the

state of pixel i, and w
ij
is the weight between i

and j. Once binary states have been chosen for

the hidden units, a Bconfabulation[ is produced

by setting each v
i
to 1 with probability s(b

i
þP

j
h
j
w
ij
), where b

i
is the bias of i. The states of

the hidden units are then updated once more so

that they represent features of the confabula-

tion. The change in a weight is given by

Dwij 0 e
�
bvihjÀdata j bvihjÀrecon

�
ð2Þ

where e is a learning rate, bv
i
h
j
À
data

is the

fraction of times that the pixel i and feature

detector j are on together when the feature

detectors are being driven by data, and

bv
i
h
j
À
recon

is the corresponding fraction for

confabulations. A simplified version of the

same learning rule is used for the biases. The

learning works well even though it is not

exactly following the gradient of the log

probability of the training data (6).

A single layer of binary features is not the

best way to model the structure in a set of im-

ages. After learning one layer of feature de-

tectors, we can treat their activities—when they

are being driven by the data—as data for

learning a second layer of features. The first

layer of feature detectors then become the

visible units for learning the next RBM. This

layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.
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times as desired. It can be shown that adding an

extra layer always improves a lower bound on

the log probability that the model assigns to the

training data, provided the number of feature

detectors per layer does not decrease and their

weights are initialized correctly (9). This bound

does not apply when the higher layers have

fewer feature detectors, but the layer-by-layer

learning algorithm is nonetheless a very effec-

tive way to pretrain the weights of a deep auto-

encoder. Each layer of features captures strong,

high-order correlations between the activities of

units in the layer below. For a wide variety of

data sets, this is an efficient way to pro-

gressively reveal low-dimensional, nonlinear

structure.

After pretraining multiple layers of feature

detectors, the model is Bunfolded[ (Fig. 1) to

produce encoder and decoder networks that

initially use the same weights. The global fine-

tuning stage then replaces stochastic activities

by deterministic, real-valued probabilities and

uses backpropagation through the whole auto-

encoder to fine-tune the weights for optimal

reconstruction.

For continuous data, the hidden units of the

first-level RBM remain binary, but the visible

units are replaced by linear units with Gaussian

noise (10). If this noise has unit variance, the

stochastic update rule for the hidden units

remains the same and the update rule for visible

unit i is to sample from a Gaussian with unit

variance and mean b
i
þ

P
j
h
j
w
ij
.

In all our experiments, the visible units of

every RBM had real-valued activities, which

were in the range E0, 1^ for logistic units. While

training higher level RBMs, the visible units

were set to the activation probabilities of the

hidden units in the previous RBM, but the

hidden units of every RBM except the top one

had stochastic binary values. The hidden units

of the top RBM had stochastic real-valued

states drawn from a unit variance Gaussian

whose mean was determined by the input from

that RBM_s logistic visible units. This allowed

the low-dimensional codes to make good use of

continuous variables and facilitated compari-

sons with PCA. Details of the pretraining and

fine-tuning can be found in (8).

To demonstrate that our pretraining algo-

rithm allows us to fine-tune deep networks

efficiently, we trained a very deep autoen-

coder on a synthetic data set containing

images of Bcurves[ that were generated from

three randomly chosen points in two di-

mensions (8). For this data set, the true in-

trinsic dimensionality is known, and the

relationship between the pixel intensities and

the six numbers used to generate them is

highly nonlinear. The pixel intensities lie

between 0 and 1 and are very non-Gaussian,

so we used logistic output units in the auto-

encoder, and the fine-tuning stage of the

learning minimized the cross-entropy error

E–
P

i
p
i
log p̂

i
–
P

i
(1 – p

i
) log(1 – ĝp

i
)^, where

p
i
is the intensity of pixel i and ĝp

i
is the

intensity of its reconstruction.

The autoencoder consisted of an encoder

with layers of size (28 � 28)-400-200-100-

50-25-6 and a symmetric decoder. The six

units in the code layer were linear and all the

other units were logistic. The network was

trained on 20,000 images and tested on 10,000

new images. The autoencoder discovered how

to convert each 784-pixel image into six real

numbers that allow almost perfect reconstruction

(Fig. 2A). PCA gave much worse reconstruc-

tions. Without pretraining, the very deep auto-

encoder always reconstructs the average of the

training data, even after prolonged fine-tuning

(8). Shallower autoencoders with a single

hidden layer between the data and the code

can learn without pretraining, but pretraining

greatly reduces their total training time (8).

When the number of parameters is the same,

deep autoencoders can produce lower recon-

struction errors on test data than shallow ones,

but this advantage disappears as the number of

parameters increases (8).

Next, we used a 784-1000-500-250-30 auto-

encoder to extract codes for all the hand-

written digits in the MNIST training set (11).

The Matlab code that we used for the pre-

training and fine-tuning is available in (8). Again,

all units were logistic except for the 30 linear

units in the code layer. After fine-tuning on all

60,000 training images, the autoencoder was

tested on 10,000 new images and produced

much better reconstructions than did PCA

(Fig. 2B). A two-dimensional autoencoder

produced a better visualization of the data

than did the first two principal components

(Fig. 3).

We also used a 625-2000-1000-500-30 auto-

encoder with linear input units to discover 30-

dimensional codes for grayscale image patches

that were derived from the Olivetti face data set

(12). The autoencoder clearly outperformed

PCA (Fig. 2C).

When trained on documents, autoencoders

produce codes that allow fast retrieval. We rep-

resented each of 804,414 newswire stories (13)

as a vector of document-specific probabilities

of the 2000 commonest word stems, and we

trained a 2000-500-250-125-10 autoencoder on

half of the stories with the use of the multiclass

cross-entropy error function E–
P

i
p
i
log ĝp

i
^ for

the fine-tuning. The 10 code units were linear

and the remaining hidden units were logistic.

When the cosine of the angle between two codes

was used to measure similarity, the autoencoder

clearly outperformed latent semantic analysis

(LSA) (14), a well-known document retrieval

method based on PCA (Fig. 4). Autoencoders

(8) also outperform local linear embedding, a

recent nonlinear dimensionality reduction algo-

rithm (15).

Layer-by-layer pretraining can also be used

for classification and regression. On awidely used

version of the MNIST handwritten digit recogni-

tion task, the best reported error rates are 1.6% for

randomly initialized backpropagation and 1.4%

for support vector machines. After layer-by-layer

pretraining in a 784-500-500-2000-10 network,

backpropagation using steepest descent and a

small learning rate achieves 1.2% (8). Pretraining

helps generalization because it ensures that most

of the information in the weights comes from

modeling the images. The very limited informa-

tion in the labels is used only to slightly adjust

the weights found by pretraining.

It has been obvious since the 1980s that

backpropagation through deep autoencoders

would be very effective for nonlinear dimen-

sionality reduction, provided that computers

were fast enough, data sets were big enough,

and the initial weights were close enough to a

good solution. All three conditions are now

satisfied. Unlike nonparametric methods (15, 16),

autoencoders give mappings in both directions

between the data and code spaces, and they can

be applied to very large data sets because both

the pretraining and the fine-tuning scale linearly

in time and space with the number of training

cases.
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