
A
U

TH
O

R
 C

O
P

Y

Journal of Intelligent & Fuzzy Systems 36 (2019) 5105–5114
DOI:10.3233/JIFS-179055
IOS Press

5105

Reasoning with preferences
in service robots

Ivan Torresb, Noé Hernándeza, Arturo Rodrı́guezb, Gibrán Fuentesa and Luis A. Pinedaa,∗
aDepartamento de Ciencias de la Computación, Instituto de Investigaciones en Matemáticas Aplicadas y en
Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Mexico
bPosgrado en Ciencia e Ingenierı́a de la Computación, Universidad Nacional
Autónoma de México (UNAM), Mexico

Abstract. Service Robots should be able to reason about preferences when assisting people in common daily tasks. This
functionality is useful, for instance, to respond to action directives that conflict with the user’s interest or wellbeing or when
commands are underspecified. Preferences are defeasible knowledge as they can change with time or context, and should
be stored in a non-monotonic knowledge-base system, capable of expressing incomplete knowledge, updating defaults and
exceptions dynamically, and handling multiple extensions. In this paper a knowledge-base system with such an expressive
power is presented. Non-monotonicity is handled using a generalization of the Principle of Specificity, which states that
in case of knowledge conflict the most specific proposition should be preferred. Reasoning about preferences is used on
demand through conversational protocols that are generic and domain independent. We describe the general principles
underlying such protocols and their implementation through the SitLog programming language. We also show a demonstration
scenario in which the robot Golem-III assists human users using such protocols and preferences stored in its non-monotonic
knowledege-base service.

Keywords: Reasoning with preferences, non-monotonic knowledge-base, robust behavior in service robots, robotics cognitive
architecture, robot golem-III

1. Introduction

Service robots need to reason about user prefer-
ences in the course of service task. However, the
inclusion of preferences in the knowledge-base (KB)
can lead to inconsistencies. For instance, if the robot
needs to go to the place where the user is in the course
of a service task, and the KB includes the rules that
(1) if a person is tired he is in the living room and (2)
if a person is hungry then he is in the kitchen, and the
robot knows that the user is tired and hungry too, it
can conclude that the user is in the living room but
also that he/she is in the kitchen, and a mechanism to

∗Corresponding author. Luis A. Pineda, Departamento de
Ciencias de la Computación, Instituto de Investigaciones en
Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad
Nacional Autónoma de México (UNAM), Mexico. E-mail:
lpineda@unam.mx.

resolve the inconsistency and move to the appropriate
place is required. More generally, in this kind of situ-
ations multiple and incompatible conclusions can be
derived from a KB at a given state –known as multi-
ple extensions– and a general mechanism to deal with
this kind of inconsistency needs to be defined.

Preferences involve a large and diverse type of
knowledge, like the things the user likes to have or do,
safety or healthy guidelines, social patterns of behav-
ior, and more generally common sense knowledge.
Preferences are defeasible knowledge and can change
dynamically during the execution of a task and, in
order to represent and use this kind of knowledge, a
non-monotonic knowledge-base service is required.

In previous work we presented a non-monotonic
knowledge-base management system for practical
applications in service robots. The KB was defined
as a conceptual hierarchy with inheritance that

ISSN 1064-1246/19/$35.00 © 2019 – IOS Press and the authors. All rights reserved

mailto:lpineda@unam.mx

A
U

TH
O

R
 C

O
P

Y

5106 I. Torres et al. / Reasoning with preferences in service robots

supports the expression of strong negation, defaults
and exceptions [16]. Non-monotonicity is handled
using the Principle of Specificity that states that in
case of knowledge conflicts the more specific piece
of knowledge has precedence or is preferred over the
more general one. In this article we extend the KB’s
expressive power of the representational system with
the association of weights to properties and relations,
where the knowledge objects with lower weights are
preferred over objects with higher ones. The exten-
sion also includes the expression of preference rules
over classes and individuals that can be stated at any
level in the hierarchy – and hence inherited to the
subsumed classes. The conclusions of such rules can
be thought of as conditional defaults that depend on
their antecedents. These rules can also be thought
of as abductive rules such that their conclusions are
explained or justified by their antecedents.

Reasoning with preferences in a practical robotics
task is illustrated in the storyboard in Fig. 1. In frame
1 Susan arrives home after work and is received by
the service robot Golem-III. Susan tells the robot that
she had a bad a day and asks it to bring her a coke
and something to eat. In frame 2 the robot checks its
KB and according to the current preferences – the
healthy guideline stored in its KB– concludes that
malz is a healthier beverage. To solve the conflict
between the overt request (the coke) and the pref-
erence, the robot kindly suggests Susan to change
her decision. She remembers how bad the coke is
for her health and accepts the suggestion. Susan’s
original command included an underspecified object
too (something to eat), so Golem-III chooses noo-
dles because their expiration date is due earlier than
other options. This decision is also based on the pref-
erences defined in its KB. In frame 3 the robot visits
the preferred locations where the items can be found.
First, Golem-III goes to the drinks table and takes the
malz; then it goes to the food table but doesn’t find the
noodles as depicted in frame 4. In frame 5 Golem-III
checks its KB and notices that the second preferred
location for food items is the snacks table, so it moves
to that table and takes the noodles. Finally, in frame
6 the robot goes to the room where the user prefers
to be and delivers the objects there. It also informs
that the noodles were in the wrong location and asks
Susan if she wants to update the preferred location
for this item in its KB.

In this paper we show a framework for reasoning
about preferences and multiple extensions with a non-
monotonic KB in service robots. First, a review of
related work is presented in Section 2. The machinery

of the non-monotonic KB-System capable of han-
dling multiple extensions is presented in Section 3.
Section 4 presents the preferences management strat-
egy and how it is used in Dialogue Models and
Section 5 includes a description of the Interaction-
Oriented Cognitive Architecture (IOCA) and the
robot Golem-III. Finally, the conclusions are pre-
sented in Section 6.

2. Related work

There has been a large body of research about
strategies to handle preferences among properties and
relations in non-monotonic knowledge representa-
tion and reasoning systems. A common approach has
been the definition of prioritized versions of Default
Logic, which are extensions containing explicit pri-
orities for defaults (e.g. [3, 4]). In contrast, Delgrande
and Schaub [8] proposed an approach to express
preferences within Reiter’s Default Logic [17] using
an ordered default theory. A related approach was
later introduced by Delgrande et al. [9] to express
preferences in logic programming under the answer
set semantics. Logic Programming has also been
extended to handle preferences by adding priorities
to rules [5].

Both monotonic and non-monotonic knowledge
representation and reasoning systems have been inte-
grated into different service robots. A prominent
instance is KnowRob [20, 21], a monotonic system
based on Description Logic (DL) which has been used
in different complex service robot tasks such as help-
ing set a breakfast table [12], manipulating tools [2],
performing actions cooperatively [10] and seman-
tic mapping [22]. Answer Set Programming (ASP)
is probably the most used non-monotonic system in
service robotics (e.g. [6, 23]). ASP has allowed the
Ke Jia’s robot task planning system to handle open-
knowledge rules [7] and to perform the tasks of the
RoboCup@Home competition [6].

However, reasoning with preferences in service
robotics has been very scarcely explored. One of
the few instances is the work by Ferreti et al. [11],
which uses Defeasible Logic Programming to repre-
sent the knowledge about the environment and the
robot’s preferences, and to reason with them for
decision making. Similarly, a high-level task planner
that takes into account human preferences was pro-
posed by Alami et al. [1]. Preferences have also been
incorporated in spatial reasoning systems for motion
planning and manipulation [18].

A
U

TH
O

R
 C

O
P

Y

I. Torres et al. / Reasoning with preferences in service robots 5107

Fig. 1. Storyboard of a practical task in which the service robot is reasoning with preferences.

Although in principle some non-monotonic
knowledge representation and reasoning systems
implemented in service robots could handle pref-
erences, to the best of our knowledge its use has
not been thoroughly studied in the context of com-

plex tasks. In this paper, we present a non-monotonic
knowledge-base system for service robots, which is
able to reason with preferences among properties and
relations, and demonstrate its usefulness in different
practical scenarios.

A
U

TH
O

R
 C

O
P

Y

5108 I. Torres et al. / Reasoning with preferences in service robots

3. Knowledge-base system with multiple
extension

Service robots need to manipulate knowledge in
their daily tasks. For this a very useful structure is the
conceptual hierarchy. This type of structure allows us
to express explicit knowledge and to infer its conse-
quences. In previous work we presented a knowledge
structure that represents a hierarchical partition of the
domain, where each partition corresponds to a class
[16]. Classes may contain more specific classes and
individuals with their corresponding properties and
relations. The inference mechanism of the conceptual
hierarchy is inheritance, so properties and relations of
the upper classes are inherited to the lower ones. In
this way, an individual has his own properties and
relations, plus those given to him by his class, which
in turn may have inherited from a class with a higher
hierarchy.

A knowledge structure can assume complete or
incomplete knowledge. According to the former, the
so-called closed world assumption (CWA), if some-
thing is not expressed in the KB it is considered false
while in the latter case it is simply not known. The
limitation of CWA is that the KB may not contain
all the facts of the world and, although answers to
queries are correct in relation to such assumption,
may not be correct in the actual world, whereas the
addition of an explicit negation in the case of incom-
plete knowledge increases the expressive power but
also the computational cost. The knowledge structure
presented in our previous work assumes that knowl-
edge is incomplete, so the answer to a yes/no query
can have three forms (yes, no and unknown), unlike
the definitive answers that would be given in relation
to CWA.

However, increasing the expressiveness power can
lead to inconsistencies since there can be implicit
or explicit knowledge conflicts; therefore, the KB
becomes non-monotonic. In our previous work non-
monotonicity is handled through the Principle of
Specificity as mentioned above [19].

3.1. Specifications of preferences

In this paper, we present an extension to the KB
such that preferences can be expressed. A preference
is distinguished from properties and relations by its
more contingent flavor. An example of concept hier-
archy is illustrated in Fig. 2; here the property may
be that mammals do not lay eggs while a preference,
like large and carnivorous animals are dangerous, has

Fig. 2. Concept hierarchy of example KB.

a more contingent character. A class or individual can
contain multiple preferences, both for properties and
relations; therefore, there may be knowledge conflicts
that the Principle of Specificity criterion cannot han-
dle directly. In the present example the preferences
are that birds live where they work and that birds live
where they were born; there is also an individual in the
birds class named Arthur, who was born in Argentina
and works in Mexico. Hence, there is a knowledge
conflict because the KB expresses that Arthur lives
in Mexico and Argentina at the same time. As these
are relations of the same individual, the inconsistency
cannot be handle by specificity directly, and an addi-
tional mechanism is needed. For dealing with this
type of conflicts, we use weights for preferences with
the convention that the smaller the weight the larger
the preference. For simplicity properties and relations
have a weight of 0, keeping priority over the prefer-
ences. Weights are provided with the specification
of the corresponding preferences. In the example the
weights of 3 and 5 are assigned to the preferences that
birds live where they work and birds live where they
were born respectively, so the former has preference
over the latter. These weights reflect the intuition that
it is more plausible that one lives in the place where
one works than in the place where one was born.

A
U

TH
O

R
 C

O
P

Y

I. Torres et al. / Reasoning with preferences in service robots 5109

3.2. Reasoning with preferences

Preferences are composed of a set of antecedents
and a consequent, defined in the KB with the
following format: [antecedent1, antecedent2, ...,
antecedentn] =>>consequent. The antecedents and
consequent may be properties or relations. Given the
set of antecedents, the consequent must be added to
satisfy the following implication:

antecedent1 ∩ antecedent2... ∩ antecedentn ⇒
consequent

Preferences are written as follows: [antecedent
=>> consequent, weight]. If there are multiple
antecedents, these are specified as a list, as fol-
lows: [[antecedent1, antecedent2, ..., antecedentn]
=>> consequent, weight]. Antecedents and conse-
quent values may be undefined. In this way, it is
enough for an antecedent to have a property regard-
less of its value. For example, the antecedent work
=> ’-’ is satisfied because the individual has the
property work=>mexico, but if the property were
work=>canada instead, it would be satisfied anyway.
Also it may be that both antecedent and consequent
have undefined values as (work=>’-’)=>>(live=>’-
’); in this case the consequent takes the value of the
antecedent; for example, the antecedent work=>’-
’ is satisfied with the property work=>mexico, so
the consequent takes this value and the property
live=>mexico is added.

In the example KB, the class birds has two
preferences which are stated as: [work=>‘-’ =>>
live=>‘-’, 3] and [born=>‘-’ =>> live=>‘-’, 5]
which means birds live where they work and birds
live where they were born respectively. The class ani-
mals has the preference [[size=>large, carnivorous]
=>> dangerous, 2] that means large and carnivorous
animals are dangerous. The complete KB is shown
in Listing 1. Therefore, if it is queried where Arthur
lives, the preference handler verifies the preferences
that satisfy its antecedents –where Arthur was born
and works– and adds its consequence –where does he
live– to the list of properties/relations; since Arthur
inherits the properties and relations of the birds
class, the list of properties ordered from left to right
by priority is: [work=>mexico, born=>argentina,
live=>mexico, live=>argentina]. So the answer to
the query will be that Arthur lives in Mexico since
the property live=>mexico has higher priority over
live=>argentina.

4. Dialogue models and preference
management

Dialogue modules (DMs) are abstract communi-
cation protocols that handle the interaction between
the robot and the world. They also manage the infer-
ence and knowledge resources. A DM characterizes
the communication between a robot and a human
by specifying expectations, actions and control infor-
mation. Moreover, the conceptual knowledge of the
robot, consisting of individuals with their properties,
relations and preferences, is included in the robot’s
knowledge-base (KB). The task structure is under-
stood as a sequence of DMs, each contributing with
an independent behaviour to the final outcome of the
task. In the context of the present project, DMs are
defined through the Sitlog programming language
[15] running in the robot Golem-III.

4.1. Dialogue model for reasoning about
preferences

In this section we show a DM named
get preferences that specifies a linguistic proto-
col for managing preference knowledge. This DM
is independent of the particular situation, domain of
discourse and final goal. It is assumed that the robot
is in front of the user and a conversation between
them is viable. The DM’s main structure is depicted
in Fig. 3.

Fig. 3. Diagrammatic representation of the DM for reasoning
about preferences.

A
U

TH
O

R
 C

O
P

Y

5110 I. Torres et al. / Reasoning with preferences in service robots

Listing 1. The example KB.

DMs are defined as directed graphs where nodes
represent situations, and links point to the next situ-
ations. A link is traversed when its expectations are
satisfied and its actions executed. In the diagram, a
link may be labelled with its expectations and actions.
Among such actions are increment and assignment of
variables, and function applications. A situation type
is either neutral, when a straightforward execution
takes place; final, representing the exit point of the
DM; and recursive, when another DM is embedded
and executed recurrently. As an example of the latter
type, consider a recursive situation executing the ask
DM, a behaviour that allows the robot to ask a ques-
tion to the user and get an answer. A large dot in the
diagram means that a function determines the next
situation. Finally, a small circle including the symbol
∨ represents a disjuntive situation, such that every
link leaving it is labelled with the condition that must
be met when such a link is traversed [15].

In the initial situation ask order the robot asks the
user for a command, adds the requested objects to
the order list (e.g., coke and something to eat) in
the variable user val and moves to the next situa-
tion preference. This is a disjuntive situation with
two instances corresponding to the base case in which
user val is empty, depicted in the upper output edge,
and the generative case where user val contains the
list of requests that could be replaced by other more
preferred objects (lower output edge). The function g
examines the final list of preferred elements lst; if this
list is empty the original order was ill-formed and the
system ends in error; otherwise, the list contains the
actual user preferences and the DM terminates suc-
cessfully. The generative case is selected when the
user’s order list is not empty (i.e., user val=[E|T])
where E is the object to be considered currently (e.g.
the coke) and T is the list of the remaining objects

Fig. 4. Hierarchy of the KB with preferences used in the demon-
stration.

of the original order (e.g. something to eat). The
next situation is selected through the function con-
sult preference which queries the KB with the current
object E and returns a preferred object Pref elem. The
function f analyzes whether E and Pref elem are the
same. If so, E is added to the final list (the object
ordered explicitly is the preferred one); otherwise the
user is asked to reconsider his/her original request
and choose the preference instead (i.e., Pref elem).
In case the user does not care the robot chooses the

A
U

TH
O

R
 C

O
P

Y

I. Torres et al. / Reasoning with preferences in service robots 5111

most preferred object of the corresponding class. The
procedure is repeated recurrently until the list T is
empty.

4.2. Preference management in the KB

The KB is a resource that is queried on demand
by DMs. Moreover, preferences are stored in the
KB and retrieved by applying the function con-
sult preference.

The KB of the example is specified in Listing 2. The
hierarchy for this KB, with its main class structure and
preferences is illustrated in Fig. 4. The specification is
provided directly when the KB is defined and contains
the initial preferences of the task. Preferences can be
updated dynamically along the execution of the task.

For the class human, one particular instance is
given, namely user. In the KB, the specification of
user means that if he had a bad day then he is
tired with preference 1. Furthermore, the room where
the user might be found follows two principles: (i)
after coming back from work and feeling tired the
user goes to the living room with preference 1; and
(ii) if the user has already asked the robot for a

comestible product he moves to the dining room with
preference 2.

The class comestible states that the item with
the nearest best-by date is to be served with pref-
erence 1; the healthiest item is to be served with
preference 2; and the item asked by the user has
preference 3. Both food and drinks are comestible
products. For food, noodles are about to expire
and bisquits is the healthiest item; for drinks, there
is no data concerning their best-by date but malz
is the healthiest drink. The property asked in the
KB is set on once the user asks for food or
drinks.

The object noodles specifies that it could be found
in the shelves of food, snacks and drinks, with pref-
erences 2, 3 and 4, respectively. The location with
preference 1 to find noodles is the place where the
robot last saw them, if that ever happened. We pro-
ceed similarly for the specification of the remaining
objects.

The class point has five instances, each of them
defines a position in the map Golem-III can go to. A
name is provided for every point.

Listing 2. The KB with the preferences associated to the storyboard of Fig. 1.

A
U

TH
O

R
 C

O
P

Y

5112 I. Torres et al. / Reasoning with preferences in service robots

4.3. Inference mechanism on preferences in the
KB

The mechanism that makes the KB work may acti-
vate a sequence of inferences on preferences in a
way that consequents from one or more preferences
become the list of antecedents of another preference,
repeating this process until no further consequent is
obtained. Each inference is resolved by applying the
Principle of Specificity on the hierarchy tree.

In the example considered earlier, Golem-III
defines two properties in the KB related to the user
after welcome him: back from work and bad day.
Later, the user asked for comestibles, so the property
asked comestible is added to the KB. When Golem-
III wants to deliver malz and noodles to the user, the
robot queries the KB to get the preference on where
the human may be found. This triggers a chained
inference on preferences concluding that the user is
in the dining room with preference 2 and in the living
room with preference 1. Therefore, Golem-III goes
to the latter location to meet the user.

Finally, the KB is also able to update preferences.
This is shown at the end of the interaction, when the
robot notices that the noodles were not found in the
shelf of food, but in the shelf of snacks. The user
is asked whether the location for noodles have to
be updated. The user agrees and the preferences are
updated accordingly.

The code for the task described in this paper,
including the DMs, user functions and the KB is
available at http://golem.iimas.unam.mx/reasoning
about prefs. A video of the task can be seen at the
same site.

5. The robot golem-III

Golem-III is a realization of the conceptual module
presented in [14] and its behaviour is regulated by the
Interaction Oriented Cognitive Architecture (IOCA)
[13]. The IOCA architecture specifies the types of
modules which integrate the system. A diagram of
IOCA can be seen in Fig. 5. Recognition modules
encode external stimuli into specific modalities (e.g.,
speech into transcriptions, images to SIFT features).
The perceptual interpreter modules assign interpreta-
tions to the output of the recognition modules for the
different modalities. On the output side, specification
modules ground global parameters to values that are
able to be rendered at a low level (e.g., “room” to [x,y]
coordinates). Rendering modules control the execu-

Fig. 5. The Interaction-Oriented Cognitive Architecture.

tion of the actions (e.g., perform navigation actions
to arrive the room). The dialogue manager is the
interpreter of the SitLog programming language [15],
designed for task description and interpretation, and
controls the input and output behaviors, and manage
the knowledge resources on demand.

Reactive behaviors, such as obstacle evasion or
the emergency stop, do not require any task context.
Thus, management from the top dialogue manager
is unnecessary. To achieve this, recognition and ren-
dering modules are tightly joined into Autonomous
Reactive Systems (ARSs) that can communicate to
the dialogue manager directly by a coordinator.

The robot Golem-III, shown in Fig. 6 is our in-
house service robot. It has a mobile base, adapted
from a MobileRobot Research PatrolBot. Golem-III
has a functional torso, which controls both arms, the
robot’s height, and a 2-DOF head.

6. Conclusions

In this paper we have presented a service robot able
to support its users considering preferences explic-
itly. Preferences are useful when action directives or
commands stated by the user stand in conflict with
his or her own believes or attitudes, healthy or ethical
guide-lines or simply with common sense knowl-
edge. Preferences are also useful when commands
are underspecified or incomplete.

Preferences are defeasible knowledge as they
can be reviewed with time or along robots service
tasks and their expression requires a non-monotonic
knowledge service. In this paper we have aug-
mented our previous non-monotonic knowledge-base
for service robots –that was capable of expressing
class hierarchies with incomplete knowledge, strong

http://golem.iimas.unam.mx/reasoning_about_prefs
http://golem.iimas.unam.mx/reasoning_about_prefs

A
U

TH
O

R
 C

O
P

Y

I. Torres et al. / Reasoning with preferences in service robots 5113

Fig. 6. Golem III+.

negation, defaults and exceptions– with multiple
extensions, through a generalization of the Princi-
ple of Specificity. Multiple extension can be thought
of as defaults or exceptions that result from different
implication chains that can stand in conflict with each
other.

Preferences are handled on demand along the inter-
action. For this we have presented a generic, domain
independent protocol or dialogue model that mod-
els a typical conversation involving preferences. The
dialogue is specified through the SitLog program-
ming language for the declarative specification and
interpretation of the task and communication struc-
ture of service robots. The dialogue manager handles
the sequence of situations in which preferences are
suggested by the robot and confirmed by the user.
Preferences are consulted and updated on demand
from the knowledge-base until the completion of the
task. We have also presented an scenario in which the
Golem-III service robots performs a task involving
preferences.

The present work shows how a non-monotonic
knowledge-base with multiple extensions can be used
to support reasoning about preferences by service
robots in a practical setting.

Acknowledgements

We are grateful to Mauricio Reyes, Ricardo Cruz,
Hernando Ortega and Dennis Mendoza, members
of the Golem Group at IIMAS, UNAM, for their
support in the development of the robot Golem-III
and the implementation of the scenario presented
in this paper. We also acknowledge the support
of grants PAPIIT-UNAM’s IN-109816 and CONA-
CYT’s 178673.

References

[1] R. Alami, A. Clodic, V. Montreuil, E.A. Sisbot and R.
Chatila, Task planning for human-robot interaction, In: Pro-
ceedings of the Joint Conference on Smart Objects and
Ambient Intelligence: Innovative Context-aware Services:
Usages and Technologies, 2005, pp. 81–85.

[2] J. Becker, C. Bersch, D. Pangercic, B. Pitzer, T. Rühr, B.
Sankaran, J. Sturm, C. Stachniss, M. Beetz and W. Burgard,
The pr2 workshop-mobile manipulation of kitchen contain-
ers, In: IROS Workshop on Results, Challenges and Lessons
Learned in Advancing Robots with a Common Platform, vol
120, 2011.

[3] S. Benferhat, C. Cayrol, D. Dubois, J. Lang and H. Prade,
Inconsistency management and prioritized syntax-based
entailment, In: Proceedings of the 13th International Joint
Conference on Artifical Intelligence - Volume 1, 1993, pp.
640–645.

[4] G. Brewka, Reasoning about priorities in default logic, In:
Proceedings of the Twelfth National Conference on Artificial
Intelligence, vol 2, 1994, pp. 940–945.

[5] G. Brewka and T. Eiter, Preferred answer sets for extended
logic programs, Artificial Intelligence 109(1) (1999),
297–356.

[6] X. Chen, J. Ji, J. Jiang, G. Jin, F. Wang and J. Xie,
Developing high-level cognitive functions for service
robots, In: Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems, vol 1, 2010,
pp. 989–996.

[7] X. Chen, D. Lu, K. Chen, Y. Chen and N. Wang, Kejia: The
intelligent service robot for robocup@home 2014. Tech.
rep., Multi-Agent Systems Lab., Department of Computer
Science and Technology, University of Science and Tech-
nology of China, 2014.

[8] J.P. Delgrande and T. Schaub, Expressing preferences in
default logic, Artificial Intelligence 123(1) (2000), 41–87.

[9] J.P. Delgrande, T. Schaub and H. Tompits, A framework for
compiling preferences in logic programs, Theory Pract Log
Program 3(2) (2003), 129–187.

[10] Z. Fan, E. Tosello, M. Palmia and E. Pagello, Apply-
ing semantic web technologies to multi-robot coordination,
In: Proceedings of the International Conference Intelligent
Autonomous Systems, 2014.

A
U

TH
O

R
 C

O
P

Y

5114 I. Torres et al. / Reasoning with preferences in service robots

[11] E. Ferretti, M. Errecalde, A.J. Garcı́a and G.R. Simari, An
application of defeasible logic programming to decision
making in a robotic environment, In: Proceedings of the
9th International Conference on Logic Programming and
Nonmonotonic Reasoning, 2007, pp. 297–302.

[12] D. Pangercic, M. Tenorth, D. Jain and M. Beetz, Combining
perception and knowledge processing for everyday manipu-
lation, In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2010, pp. 1065–1071.

[13] L.A. Pineda, I. Meza, H. Aviles, C. Gershenson, C. Ras-
con, M. Alvarado and L. Salinas, Ioca: Interaction-oriented
cognitive architecture, Research in Computing Science 54
(2011), 273–284.

[14] L.A. Pineda, A. Rodriguez, G. Fuentes, C. Rascon and I.V.
Meza, Concept and functional structure of a service robot,
International Journal of Advanced Robotic Systems, 2013,
pp. 1–15.

[15] L.A. Pineda, L. Salinas, I. Meza, C. Rascon and G. Fuentes,
Sitlog: A programming language for service robot tasks,
International Journal of Advanced Robotic Systems (2013),
1–12.

[16] L.A. Pineda, A. Rodrı́guez, G. Fuentes, C. Rascón and I.
Meza, A light non-monotonic knowledge-base for service
robots, Intel Serv Robotics 10 (2017), 159–171.

[17] R. Reiter, A logic for default reasoning, Artificial Intelli-
gence 13 (1980), 81–132.

[18] E.A. Sisbot, L.F. Marin and R. Alami, Spatial reasoning
for human robot interaction, In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2007, pp.
2281–2287.

[19] C. Strasser and G.A. Antonelli, Non-monotonic logic. In:
Ward N Zalta (ed) The Stanford Encyclopedia of Philos-
ophy (Winter 2014 Edition), New York: Academic Press,
2014.

[20] M. Tenorth and M. Beetz, Knowrob: A knowledge pro-
cessing infrastructure for cognition-enabled robots, The
International Journal of Robotics Research 32(5) (2013),
566–590.

[21] M. Tenorth and M. Beetz, Representations for robot knowl-
edge in the knowrob framework, Artificial Intelligence
(2015).

[22] M. Tenorth, L. Kunze, D. Jain and M. Beetz, Knowrob-map
- knowledge-linked semantic object maps, In: IEEE-RAS
International Conference on Humanoid Robots, 2010, pp.
430–435.

[23] S. Zhang, M. Sridharan and F. Sheng Bao, ASP+POMDP:
Integrating non-monotonic logic programming and prob-
abilistic planning on robots, In: Proceedings of the IEEE
International Conference on Development and Learning
and Epigenetic Robotics, 2012.

