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Abstract

In this paper we discuss two kinds of constraint satisfaction problems that arise in the context of
geometric modelling. In particular in the modification of 2-D wire-frame diagrams that are subject to
an arbitrary number of geometrical and topological constraints. We argue that problems in this domain
can be classified in two categories that we shall call problems of reference and problems of synthesis.
Since Sutherland’s Sketchpad program [16], a large number of systems have addressed constraint satis-
faction in terms of the representation of constraints sets as equation systems, which in turn are solved
by numerical methods like local propagation, relaxation and Gaussian elimination. Here, we present
an alternative framework. We argue that conceptualising constraint satisfaction as symbolic rather
than “numerical” problems helps to clarify the notion of “constraint”, simplify solution methods, and
to explain the intuitive inferential processes underlying the modification of drawings in the course of
interactive drafting sessions. The theory presented in this paper has been tested with an experimental
computer program called Graflog [5, 8, 9, 10, 11, 12]. The program has been implemented during
the last four years, and has evolved through several stages. The current version is implemented in
terms of two Unix-processes connected by Unix-pipes. The first is a “C” program running X windows,
and handles the external aspects of the interaction. The second is a Prolog program supporting the

representational structures and interpreters of the system.

Key-words: Constraint satisfaction, Drafting and Problem-solving, Knowledge Represen-
tation in graphics, Graphics Semantics.

1 Prescription and Constraint Satisfaction

In this section we motivate the use of a representational language expressive enough to refer
to graphical symbols, relations and constraints in an integrated fashion. We explain that a
drawing can be fully described by a set of linguistic terms that act like names or descriptions of
the graphical symbols constituting a drawing. Constraints, on the other hand, are represented
by sentences of such a language.

Consider Figures 1.1 to 1.6 in which a drawing screen is illustrated. In Figure 1.1 two lines
are edited by standard interactive techniques. Suppose that we intend such a pair of lines to
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stand in a {_join relation during the interactive session. A representation of such lines can be
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Figure 1: A Simple Constraint Satisfaction Problem

stated by the following symbolic equations:

(1) 11 = line(dl,dg)
(2) 12 = lil’le(dg,d4)

The constraint, in turn, can be represented by the expression,
(3) t_jOil’l<12,11)

Now consider what happens if one of the lines, 11, as dragged to a new position as shown
in Figure 1.2. In this state the {_join constraint does not hold, and a constraint satisfaction
algorithm can be invoked to make an appropriate change, and produce the drawing in Figure
1.3.

Note, however, that the proposed solution for the change problem has a certain amount of
indeterminacy. Expressions (1)—(3) tell us what the constraint satisfaction algorithm should
do, but they do not specify how the task is to be accomplished. In fact, Figures 1.4 to 1.6
are alternative constructions, less intuitive perhaps, but which nevertheless satisfy the drawing
description and constraints.

This simple example illustrates a problem that has long undermined the use of geometric
modellers. These systems tend to behave well when the expectations of the human-user match
the expectations with which the program was specified and implemented. However, when the
demands of the modelling task differ from the original model, systems tend to behave in erratic



and idiosyncratic ways [13]. This has been labeled as the problem of “prescription” and it is
argued that one goal for the next generation of drafting and CAD systems is to overcome this
limitation [2].

It is clear that the more explict the representation the less the “semantic contribution”
made by the constraint satisfaction algorithm. To a certain extent we face a problem of
naming. Here is where a knowledge representation language comes into the picture. A language
that is expressive enough will allow us to refer and to describe not only the graphical symbols
constituting a drawing but also its associated constraints. The purpose of this paper is to argue
that a family of constraint satisfaction problems reduce to problems of naming or reference.
However, it will be shown that not all problems belong to this class, and there is a family of
problems whose solution will be causally determined by the constraint satisfaction method.
We will refer to this latter class as “problems of synthesis”.

2 Names and Descriptions

In parametric design we deal very often with problems of reference. These problems have
traditionally been solved with the help of constraint satisfaction algorithms. Here, we argue
that a proper naming policy would substantially reduce the need for using such problem-solving
techniques. In this section we develop the example in Figure 1 to illustrate the consequences
of naming graphical symbols and constraints in an integrated fashion.

Consider Figure 2.1 in which two lines have been defined. The lines are represented as

follows,
(4) 11 = lil’le(dl,dz)
(5) 12 = line(dg,d4)

The left side of each of these equations is a name, and the right side is a description. The
equality holds if the name refers to, or names, the same object in the drawing that is referred
to by the associated description. The name and the description must be of the same syntactic
type for the equality relation to be meaningful. Note that within the graphical description of
a line, names referring to graphical objects of other kinds can be included. The symbols dy,
dg, d3 and dy4 are in fact names of the corresponding graphical dots on the screen.

Consider now Figure 2.2 in which we have added two additional lines in the drawing.
Suppose, in addition, that we define the new lines, 13 and 14, with the intention that a {_join
is established between each of these lines and both 1; and 15. The question we are interested
in is how do we refer to these new objects? The most simple way to do it is by specifying the
lines and the constraints with independent expressions as we did before. However, if we allow
the substitution of names by descriptions when they have the same syntactic type and denote
the same individual, a more powerful naming device is at hand. For instance, if the expression
intersect(1l,,1p) is of sort dot, it can be replaced by the constant d, if this constant names
in fact the corresponding intersection, and vice versa. With this notion we can define the lines
added in Figure 2.2 as follows,

(6) 13
(1) 14

line(ds,intersect(1y,15))

line(dg,intersect(1y,15))
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Figure 2: Descriptions and Constraint Satisfaction

The idea in (6)—(7) is to use descriptions that hold in any graphical state during the drafting
production process. Note that if we edit Figure 2.2 by dragging 1; as shown in Figure 2.3,
the lines 13 and 14 will be updated as shown in Figure 2.4 in virtue of the description only.
Here, there is no need to invoke a constraint satisfaction algorithm at all. Furthermore, the
description remains constant across graphical change, and the only parameters that need to be
updated in the knowledge-base are the values of the most basic constants, namely, the position
of the basic dots.

Another way to think of graphical descriptions is as functions from the invariant geometrical
objects of a modelling task to drawings. This sheds additional light on problems related to
constraint satisfaction in which we are interested in modifying the value of some graphical
properties while keeping the values of other properties constant during the modelling process.
In the current example, we are controlling the {_join relations between the lines 13 and 14 to
the lines 1y and 15 in terms of the basic descriptions of 1; and 1,.

The use of descriptions gives additional expressive power over alternative parametric design
techniques in which the “parameters” are restricted to being constant values. However, there
is no freedom without responsibility. This is so because a well-formed description can have a
proper referent in some interactive states while lacking such a referent in others. Consider,
for instance, the transition from Figure 2.4 to 2.5. Here, the position of ds, a basic constant,
has been changed in such a way that the lines 1; and 15 do not intersect each other in the



new state. The question is, what happens with the lines whose descriptions are functionally
dependent upon such an intersection? Normally, functions represented by descriptions in an
interactive graphics context are partial rather than total, and there are states in which their
images are not defined. Note that most drafting systems would not allow the transition from
2.4 to 2.5 because that would lead to inconsistencies of the data-structures representing the
drawings. In such a situation we would probably get a message saying “invalid operation:
try again”. However, such a strategy is prescriptive because the system is forcing predefined
drafting strategies. Such conventions can be proper in some situations, but there might be
contexts in which global drafting intentions of the human-user are more relevant to the drafting
task than a local constraint that can be provisionally left unsatisfied.

The use of descriptions allows the transition from Figure 2.4 to 2.5. Although the actual
value of some graphical properties is undefined in the new state the representation is still con-
sistent. In fact, as was mentioned above, descriptions are invariant. In our current prototype
implementation, when the system interpreter finds that there is no value for an expression like
intersect(1ly,1;) in the current state, it allows the change and sends a message warning the
user of the irregular condition. Note as well that some graphical objects referred to in the
description —the independent dots— have nevertheless a well defined value and can be drawn
on the screen.

Consider now the transition from Figure 2.5 to 2.6 in which the other extreme of 1, is
modified in such a way that the intersection between 1; and 1, is defined again. Here, the
functions represented by the descriptions of 13 and 14 are properly defined and the lines can
be drawn again. In this fashion the system can move in and out of partially defined states of
the interaction while preserving semantic consistency. This is another point worth thinking
about. In traditional constraint satisfaction the notions of “inconsistency” and “partiality”
are not often distinguished.

In a sufficiently expressive representational language descriptions can be defined to be as
simple or as complex as desired. Descriptions can be used to refer to any kind of graphical
object as long as it is syntactically defined.! Here it is worth pointing out that the problem of
when and how a human-user or the system specifies a description is an interface problem, which
is independent of the semantic problem of how descriptions are interpreted. In our current
implementation there is a heuristic function that given a graphical context and a pointing
action, returns an expression that refers to the current position of the cursor in an informative
and relevant way. In a practical implementation a number of tools for allowing the human-user
to define, review and modify descriptions during interactive sessions can be very helpful. The
point is that whenever we want the system to behave according to our drafting intentions
the more explicit the expression of such intentions, the less room for “system idiosyncrasies”.
However, there are problems that require additional representational devices and problem-
solving methods. In the next section we turn to such “synthesis” problems.

!For a detailed account of how to specify the syntactic definition and semantic interpretation of graphical
languages see, for instance, [12].



3 Naming and Constraint Satisfaction

In the previous section we have discussed the role of descriptions in constraint satisfaction.
Here we investigate how constraints on more general graphical properties and relations can
be expressed through a representational language, and how such language can help to solve
constraint satisfaction problems.

Consider that descriptions are terms of the language that denote, or refer to, graphical
objects of a certain graphical sort. The name 1; and the description 1ine(d;,d;), for instance,
denote an object of sort line. Constraints, on the other hand, can be thought of as properties
that must or should hold of a drawing, and they are usually expressed through boolean
expressions. That is to say through expressions that refer to truth values. The notion of
constraint, in addition, presupposes an intention. Through the representational language, we
can name or refer to accidental features of a drawing without intending to state a constraint;
but when we constrain a drawing we express an intention: a goal to be achieved either by the
user or by the system. We express, for instance, that two lines ought to be parallel, or that a
line ought to have a certain length. Constraints do not necessarily have a definite value, as when
we assert that the area of a polygon should be larger than a certain minimum and smaller than
a specified maximum value. Constraints can also be negative propositions, as when we express
that two polygons should not intersect each other. In summary, an expression representing a
constraint differs from a name or a description in that while the former is a modal sentence,
the latter are substantives or noun phrases.?

Constraints can be embedded within descriptions too. Think of complex names with a
relative clause component like the line that should be parallel to 11 and perpendicular to 1.
For representing this mixture of a description and constraints we need powerful representa-
tional devices. For instance, an operator that relates a variable and a conjunction of boolean
expressions, forming a syntactic construction that is a term of the same sort as the variable in
question. For instance,

(8) description(xy,.): parallel(x,1;) A perpendicular(x,ly)

Note that such a description would have to be interpreted very much like a variable whose value
is constrained by a number of properties. Here, we do not intend to go into the complexities
involved with the actual definition of such a kind of structure, but just to illustrate that
the different ways to refer to an object within the language and the external attributions
made to the same object, contribute and interact in complex ways to the definition of the
global constraints that are placed upon the graphical object in a drafting task. In general, the
complete description of an object can be distributed in a large number of expressions, although
only some of these are nouns or descriptions. Furthermore, the interaction of how a graphical
symbol is described with what else is said in the language about the symbol “demarcates” the
design possibilities for the object in the world that is represented through the symbol.

Next, we illustrate how this reflection is realised in practice. Consider the shape in Figure
3 and its associated description in (9),

?Here, linguistic terms like modal sentence and substantive are used in the intuitive sense of elementary
grammar: a substantive is a noun, and a modal sentence has a modal auxiliary —like must or should—in it.



Figure 3: A Constrained Shape

(9) 1; = cline(d,,0)
1, = cline(d.,1/27)
13 = line(dp,origin(ay))
14 = line(end(a;),ds)
15 = line(ds,dy)
1 = line(d4,origin(1l3))
a; = arc(intersect(1ly,15),p,0,1/27)
k; = path(ls,a;)
ky = path(ky,1y)
k3 = path(ky,1s5)
k4 = path(ks,1ls)
poly; = polygon(ky)

Note that in (9) there are two different ways of describing a line. While the functor term line
denotes a function of type dot x dot — 1line, the functor term c_line denotes a function of
type dot x real — line. While line permits the definition of a line segment in terms of its
extreme dots, c_line allows us to define a line in terms of a dot and an angle. This latter device
is useful for representing construction lines and reference axes. In our example, the intersection
between the the axes 11 and 1, is the independent parameter that controls the description of
the arc aj, which is defined in turn with the help of the functor term arc. This functor term
denotes a function of type dot x real x real x real — arc. The interpretation of its
arguments is as follows: the first is the centre of a circle of which the arc is a segment, the
second stands for the radius of the circle, and the third and fourth stand for the angles of two
axes —the arc extends from-to— intersecting the centre of the circle. In the definition of a; in
(9), the first argument is an expression of sort dot, while the other three arguments are real
constants. Note that the arc itself can be modified either by changing the parameters of the
control axes, or by changing the value of the constant parameters. The constructor term path



has nine different homonymous interpretations of the form @ x § — path, where o and 3
stand for 1line, arc or path. It permits the recursive specification of a path in terms of its
constituent segments, as shown for the definition of k; to k4 in (9). Finally, the polygon’s
constructor term poly denotes a function of type path — polygon and maps simple closed
curves to polygons.

In addition to “constructor” functor symbols, like line, c_line, arc, etc., there are a number
of “selector” functor symbols, like origin and end. These functors are interpreted as functions
of type line — dot, path — dot or arc — dot. The expression origin(a;), for instance,
denotes the origin of a;, travelling the arc in a counter-clockwise direction.

Consider now that we wish to express that the shape in Figure 4.1 ought to satisfy the
following set of constraints across change processes:

(10) {parallel(l4,1lg),vertical(ls)}

What should be done when the shape is altered in the course of the interactive session as shown
in Figure 47

4.1 4.2
Figure 4: Specification of a Change

A proper policy on naming will not sufflice for dealing with the new change problem. The
right-end of 15 and the bottom-end of 15 are linked to the dot dg by their basic descriptions, and
these lines are modified by reference. Notice that all expressions in (9) refer to a well-defined
graphical object in Figure 4.2, but (10) is not satisfied in the new state. Here we need, indeed,
a constraint satisfaction method. However, the change is not fully determined. Description (9)
can refer to an infinite number of configurations in which the constraints in (10) are satisfied.
One trivial solution is, for instance, to reverse the change to the state in Figure 4.1. For this
reason, the constraint satisfaction method will have a semantic contribution to the solution of
the problem, and a certain amount of “prescriptiveness” will be inevitable. Next, we consider
two options for dealing with the change.

Traditionally the sort of problem exemplified in Figure 4 has been addressed with numerical
techniques, like local propagation, relaxation and Gaussian elimination. This tradition goes
back to Sketchpad [16] and it is still found in many modern systems, for instance, [1, 3, 4, 6, 14,
15]. However, this approach has the drawback that the actual configuration produced by the
system will be causally determined by a number of factors that are contingent to the drafting



task: how the constraints are translated into algebraic equations, what initial conditions are
selected for the numerical equation-solving method, etc. In short, the solution will come out
of the blue for the human-designer and there is no easy way to justify a design decision made
by the system.

Constraint satisfaction problems of this kind can be solved, alternatively, through a sym-
bolic inference process. This strategy can be implemented with the definition and use of a
number of context sensitive drafting rules that modify drawings in specific ways. Our cur-
rent implementation supports a number of rules for making lines vertical, parallel, horizontal,
perpendicular, etc. There are also some rules that can satisfy complex contraints stated as
conjunctions of a number of atomic conditions. Consider, for instance, the following two rules
in which actual graphical contexts are shown in solid lines, and a number of construction lines
are drawn by the rules themselves. The first rule makes a line vertical in a context in which
an arc is next to the line in question, as illustrated in Figure 5.1; the second makes two lines
parallel, one of which is next to an arc. Although the parallel condition can be satisfied in an
infinite number of different modes, our rule proceeds by rotating the line that is next to the
arc, as shown in Figure 5.2. Note as well that each rule has a reference dot that acts as a kind
of “pivot” for its application. Contexts are defined relative to such reference individuals.

Figure 5: Synthetic Drafting Rules

Now, our change problem can be solved with the sequential application of these rules as
shown in Figure 6. Figures 6.1 and 6.2 illustrate the change specification. The transition
from Figure 6.2 to 6.3 illustrates the application of rule 5.1. In order to make 13 vertical,
this transformation changes the radius of a;; however, it preserves the value of the other arc’s
parameters. The application of rule 5.1 is permitted because there is a topological match
between the context of the rule and the context of the drawing, and also because there is a



reference dot available for the application of the rule. This reference is the dot whose position
was modified by the user in the original change command. In the transition from Figure
6.3 to 6.4, rule 5.2 satisfies the parallel constraint between 1g and 14. The reference for the
application of this second transformation is provided by the interpreter in terms of the previous
changes made by the system in the current solution path. In the current implementation, a
dot whose position is modified by a drafting rule becomes a candidate reference for a further
transformation. In order to control cyclic solution paths, whenever a dot is modified by a
drafting rule its position is taken to be an invariant property for subsequent modifications of
the drawing in the current solution path.

Figure 6: A synthesis Process

Is this the solution intended by the user? If he or she is aware of the drafting rules —in
fact, the human-user can define his or her own rules— he or she might foresee the solution.
However, this is not in general the case. Knowing a collection of rules, no matter how simple
they are, is not equivalent to knowing their logical consequences. In fact, the task is non-
deterministic and a given problem can have a large number of solutions. Furthermore, a
solution can be found through different search paths. In the current prototype implementation
there is an “explain” option through which human-users can inspect how the system has solved
a problem. When an explanation is requested, the system produces a sequence of windows
illustrating the sequence of rules that have been applied in the solution of the problem. An
instance of such an explanation is Figure 6 itself. In addition, the user can inspect all the
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solutions that can be found by a given set of drafting rules.

Here, a number of questions in relation to the applicability of the method can be raised.
For instance, whether if the system finds a solution it is valid, or whether if there is a solution
the method is assured to find it —that is, whether the method is complete. We can confidently
say that the answer to the first question is positive; however, the answer to the second is not:
to know whether an arbitrary set of geometrical and topological constraints has a solution is an
np-complete problem [7]. The most that we can say is that if the descriptions are well-defined
and the constraints constitute a consistent set it is possible that there is a solution, but not
that there is one necessarily. The solutions accessible to the system will depend on the drafting
rules at hand.

In relation to implementational issues we can say that a means-end analysis combined with
depth-first search is relatively easy to implement and performs well at least in the experimental
setting. The depth-first limitation can be removed in a parallel implementation in which
several solution paths can be simultaneously explored. Although the current implementation
is sequential, it simulates in many respects a distributed one, which we hope to implement in
the future.

4 Conclusions

In this paper we have discussed two problems related to the modification of drawings, or para-
metric design, in the course of interactive sessions. We have argued that traditional constraint
satisfaction approaches based on numerical techniques fail to distinguish some problems of rep-
resentation and interpretation. We have also argued that a proper naming policy, supported
by the use of a sufficiently expressive representational language, helps to solve problems of
change by reference, without resorting to constraint satisfaction algorithms. However, naming
graphical objects and specifying a number of geometrical and topological constraints upon
them are not independent representational problems. For that reason, some change processes
are best modelled with the use of symbolic synthetic inference techniques. We have also argued
that symbolic solutions to constraint satisfaction problems should be preferred because they
can be explained in relation to the semantics of the drafting task, and not in relation to the
numerical techniques that are internal to the computer system.
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