
Synthesis of Solid Models of Polyhedra from their Orthogonal
Views using Logical Representations

Gabriela Garza Luis Pineda
Instituto de Investigaciones Eléctricas Instituto de Investigaciones Eléctricas���������	�
����������������	��������������� �!�#"���� ���������	�
����������������	��������������� �!�#"����

$&%('*)�+-,�.0/2143 ������� 5���"�� /76 ���98 /06;:�< �#"�� $&%('*)�+-,�.0/2143 ������� 5���"�� /76 ���98 /06;:�< �#"��
=>��?�8 '*@�)�A�@B) '�'	/ � < �C8 ,D'*E�@ =>��?�8 '*@�)�A�@B) '�'	/ � < �C8 ,�F�F�@

G2� <;'*@�)IHJE�)I.�@ G2� <;'*@�)IHJE�)I.�@
KLK ���#M��ON�� K �P8 � � � 8 �C� K 8 � < ? 3 � ��N�� K �Q8 � � � 8 �C� K 8 � <

Abstract

In this paper a representational language of a logical kind which is expressive enough to model concepts of
descriptive geometry is presented.  The language  is employed to produce solid models of polyhedra from
representations of their orthogonal projections. The synthetic process has as its input well-formed
expressions representing the geometrical entities and relations of  bidimensional orthogonal views and
employs expressions representing drafting concepts of descriptive geometry to produce expressions denoting
the 3D objects contituting the final polyhedra. The production of 3D models of solid objects from their
orthogonal views has a significant history within computer graphics and CAD. Most previous approaches are
based on numerical algorithms modeling  geometrical and topological constraints of the problem domain in a
quantitative fashion.  However, in this approach, geometrical objects are referred to through expressions of a
declarative language, and  the final object is produced through symbolic inference.

1. Introduction
The production of solid models of polyhedra from orthogonal views has been the subject of a large number of
studies. Research addressing this problem can be traced as far back as Idesawa’s 1973 study [Idesawa73].
Other systems have been produced by Lafue [Lafue73], Sakurai  and Gossard [Sakurai83], Haralick and
Queeney [Haralick82], Preiss [Preiss84]. A good survey of all of these algorithms is presented by Nagendra
and Gujar [Nagendra88]. Most of these systems employed a bottom-up approach which starts from the
identification of the basic 2D points for the sequential production of 3D points, lines, surfaces to arrive to the
final 3D model. Although orthogonal views are normally unambiguous, synthetic procedures based on the
computation of local properties of geometric entities generate false 3D elements that have to be removed for
producing a valid configuration. Validity is tested in these approaches through mathematical criteria.
Constraints  at this level of abstraction are, for instance, that a valid polyhedra have to satisfy Euler’s rule.
Another important characteristic of these methods is that the information concerning the coordinate
positions of dots and lines in orthogonal views is especified in three different 2D coordinated systems, one
for each view. For instance, the top view corresponds to the x-y plane, the front view to the x-z plane and the
right view to the y-z plane. 3D coordinate positions are computed from these basic 2D spaces.

In normal drafting tasks, on the other hand, people apply more abstract interpretative concepts relating
views, faces, projections and constraints on these notions. For instance, two adjacent faces must not meet on
the same plane and an edge must be shared by at most two faces. Rather than starting the interpretation
process by looking at individual dots, people consider polygons in especific views as projection of faces
during the whole of the interpretation process. This view suggests a top-down interpretation process for the
construction of solid models. In addition, it is considered that from the point of view of people all views are
represented in a single piece of paper, which is a 2D space. The axes determining the position of the views
relative to each other are drawn relative to a 2D reference space for the drawing as a whole, and a number of
auxiliary geometrical elements commonly used in drafting practices, like construction lines, are defined
relative to this space too. This qualitative description of drawings through a formal declarative language
follows the lines of the graphical language developed for the GRAFLOG system [Pineda89,92], which
allows us to make systematic complex reference to graphical entities and relations appearing in orthogonal



drawings. However, while the GRAFLOG system is only concerned with the production of 2D drawings, the
aim of the present theory  is to obtain solid models. The purpose of this work is to express explicitly the
knowledge required for the interpretation of orthogonal projections and the production of isometric views at
the knowledge level.

In Section 2 a characterization of the kind of polyhedra that can be interpreted by the system is presented
and some examples of the graphical concepts that have to be model to support the interpretation task are
illustrated. Then, an intuitive introduction to the expressions of the representational language required for
referring to individuals and relations involved in drafting concepts is given. In Section 3 a formal definition
of the syntax and semantics of the representational language is presented. The language is essentially a
many-sorted first-order logical language with equality, function symbols and lambda abstraction. In Section
4 a set of concepts of descriptive  geometry required for the interpretation of orthogonal views is presented.
Finally, in Section 5 the heuristic procedure that uses these expressions to synthesize the solid model is
illustrated with the help of an example.

2. Modeling Graphical Concepts of Descriptive Geometry
Consider Figure 1a in which the orthogonal projections or views of a polyhedron are shown. As can be seen
the 3D representation of the solid, enclosed in a transparent box, is decomposed in a number of 2D
representations, usually three (namely, top, front and right-side views). In normal technical drafting
practices people are given these three views in a planar representation relative to a 2D coordinate system as
shown in Figure 1b, and his or her task is to produce a 3D representation (isometric, oblique or perspective).
Although these drawing are interpreted as 3D objects, they are not really tridimensional as they are drawn in
a piece of paper, and the reasoning process applied by people for the construction of isometric views acts
upon bidimensional representations of objects and produces tridimensional representations of the sought
polyhedra (presumably).

It is worth highlighting that this notion of reasoning in 2D considers not only the 2D objects appearing
explicitly on the drawing, but also other objects, like constructions lines, employed to relate objects in
different views. In particular, a graphical reasoning task in this problem-solving domain consists in
verifying whether objects in different views correspond to the projections of a 3D object. Whenever such a
relation holds it is possible to postulate that a certain 3D object is being represented through its orthogonal
views.

Next this notion of graphical reasoning is illustrated with the help of a simple example. When a surface is
perpendicular to a plane, the projection of the surface on to that plane is a line; otherwise the projection is a
polygon, as can be seen in Figure 1a in which the top surface of the solid is projected as a line in the front

PLANE OF PROJECTION
(FRONT)

PLANE OF PROJECTION
(TOP)

PLANE OF PROJECTION
(RIGHT-SIDE)

Top view

Front view Right-side view

top view

front view right-side view

 (a)                                                                (b)
                           

Figure 1  Orthogonal projections or views of a polyhedron.



and right-side views, and as a polygon in the top view. A typical situation of a surface that is perpendicular
to the top plane of projection and inclined to the others is illustrated in Figure 2. In order that people can
indentify the line and two polygons of Figure 2, when they occur in the context of a meaningful and
complete drawing as projections of the same surface, a number of conditions must hold that must be verified
through a reasoning process. In technical drafting practices the conditions are identified with the help of a
number of construction lines. In our example, these conditions are as follows:

1. Relation between the line in the top view and the polygon in the front view:
1.1. A vertical construction line la passing through the left dot of the line in top view must intersect the

left-most dot of the polygon in the front view.
1.2. A vertical construction line lb passing through the right dot of the line in the top view must intersect

the right-most dot of the polygon in front view.

2. Relation between the polygon in the front view and the polygon in the right-side view:
2.1. A horizontal construction line lg  passing through the top-most dot of the polygon in the front view

must intersect the top-most dot of the polygon in the right-side view.
2.2. A horizontal construction line lh passing through the bottom dot of the polygon in the front view

must intersect the bottom dot of the polygon in the right-side view.

3. Relation between the line in the top view and the  polygon in the right-side view:
3.1. A vertical construction line le passing through the intersection between the 45° axis and the

horizontal construction line lc -dot d3- intersects the right-most dot of the polygon in the right-side
view. The line lc passes through the top-most dot of the line in the top view and intersects d3.

3.2. A vertical construction line lf passing through the intersection between the 45° axis and the
horizontal construction line ld  -dot d4- intersects the left-most dot of the polygon in the right-side
view. The line ld passed through the bottom dot of the line in the top view and intersects d4.

4. Relation between the lines in the front view with the lines in the right-side view:
A line of the polygon in the front view corresponds to a line of the polygon in the right-side view if a
common reference can be identified through the top view. For instance, consider the line ly in the front
view and its corresponding line lz in the right-side view. The line lz is defined by dots d1'' and d2'',
where d1'' is defined by the intersection of the horizontal contruction line lg passing through d1 in the
front view, and the vertical construction line lf passing through d4 which in turn is determined by the
intersection between the 45° axis and the  horizontal construction line ld. The line ld passes through d1'
which is defined by the intersection of lx and the vertical construction line la, which passes through dot
d1. The dot d2'' defining lz is obtained as above but considering the extreme dot d2 of ly. Relations
between other lines of the front and right-side view can be identified by similar constructions.

lx

ly lz

la

lc

lb

ld

lelf

lg

lh

d1

d2'

d4

d3

d1'

d1''

d2 d2''

Figure 2  Orthogonal views of a surface perpendicular
to the top plane and inclined to the others.



For verifying whether these conditions hold, it is required to have a representational language expressive
enough to state such geometrical descriptions. Note that natural language descriptions 1 to 4 involve relative
clauses, conjunctions, disjunctions, reference to individuals and groups of individuals, etc. It is not clear how
these descriptions can be expressed dynamically (through an interactive dialog with the final user) in
traditional languages of the kind commonly used in graphics and CAD systems, like for instance, object
oriented programming languages. In the current approach a many sorted first-order logical language
augmented with equality and lambda abstraction is employed. Through this language complex descriptions
can be stated and their denotations can be obtained through the interpretation process. The synthetic
program that produces the solid object has as its input a collection of expressions representing the
orthogonal views and uses the language interpreter to compute the actual reference of expressions needed in
the evaluation of constraints of the task and in the production of the solid model. In our representational
language (presented below in Section 3), the expression denoting the objects and relations illustrated in
Figure 2 is as follows:

 λxline ,ypolygon ,zpolygon  
   (dot_on_line(p_left(ypolygon), proj(top, front, left(xline)))   ∧
   (dot_on_line(p_right(ypolygon), proj(top, front, right(xline))) ∧
   (dot_on_line(p_left(zpolygon), proj(top, right, down(xline))) ∧
   (dot_on_line(p_right(zpolygon), proj(top, right, up(xline))) ∧
   (dot_on_line(p_up(zpolygon), proj(front, right, up(xline))) ∧
   (dot_on_line(p_down(zpolygon), proj(front, right, down(xline))) ∧
    ∀wline (line_of_polygon(wline, ypolygon) →
                       line_of_polygon(line(intersection(proj(tv, rv, intersection(proj(fv, tv, left(wlline)),xline)),
                                                                         proj(fv, rv, left(wline))),
                                                      intersection(proj((tv, rv, intersection(proj(fv, tv, right(wline)),xline)),
                                                                         proj(fv, rv, right(wline)))),
                                                zpolygon ))

Expression 1  Expression of the logical languaje denoting the objects and relations illustrated in Figure 2.

As can be seen, expression 1 denotes a function of sort line x polygon x polygon → bool which takes the line
in the top view and the polygons in the front and right-side views, and returns the value true if the line and
the two polygons correspond to the projections of a surface of a solid. The operator symbol dot_on_line in
the body of expression 1 is interpreted as a function that takes a dot and a line and produces as its value true
if the dot is on the line and false otherwise. The symbol proj denotes a function which takes as its arguments
two views and a dot and has as its value a line, which is the construction line, vertical or horizontal, that
passes through the dot in the first view and relates the two views. For instance, the construction line through
the point d1' that relates the top and front views is expressed in the language as proj(top,front,d1'), and the
construction line passing through d1' that relates the top and right-side views is expressed by
proj(top,right,d1') and denotes the line lf. The expression left(l) denotes the left-most dot of line l and, on a
similar way, the symbols right, up, down. The interpretations of the operator symbols p_left, p_right, p_up,
p_down are the left-most, right-most, etc., dot of a polygon. The language makes explicit use of quantifiers
and variables of the different sorts, and employs also logical constant symbols of first order logic. Although
expressions are formally defined in a prefix form, we use infix notation when appropiated for clarity. The
development of the syntax and semantics of representational languages and its interpreter is one main focus
of this work, and  in Section 3 a full specification of this language is presented.

Consider now that the situation depicted in Figure 2 never occurs out of contex, but it rather appears
embedded within a whole orthogonal configuration with many graphical symbols in which the projections of
a given entity in one view into the others cannot be known by simple inspection of the drawing in most
situations. Consider Figure 1b in which several lines and polygons can be discerned in each of the views.
How do we know that the right rectangle of the top view corresponds to a line on each to the other two
views? The first approximation to the problem would be to consider an exhaustive search in which every
individual entity (dots, lines and polygons) of one of the views is compared with all objects in the other



views. This approach is, however, not practical because the exponential nature of the search process. In
normal human drafting practices people do not do this kind of search and some heuristics must be involved
in the selection of the entities that are likely to match. One strategy for solving the problem would be to
order the views and scan objects in views according to that order. Polygons in views can also be ordered for
the scaning process and the search can be performed in a way that only relevant paths are explored. This
process needs to be guided with the help of a number of heuristics. Our procedure will be explained in
Section 5. For the present purpose what needs to be emphasized is that the final object must satisfy a number
of constraints in order to be considered a valid polyhedron. Constrains can be checked in local steps of the
generation process and also at a global level when the final object is produced. Global constraints on objects
produced by a synthetic procedure are as follows:

  i) A polyhedron must be a solid limited by a set of polygons, interpreted as faces, where each line -an
edge- must be shared exactly by two faces (2-manifold polyhedron). In Figure 3a an invalid polyhedron
is shown1.

 ii) Two adjacent faces of a polyhedron must not lie in the same plane (as shown in Figure 3b).
iii ) Each face of a polyhedron is defined by exactly one polygon. This constraint eliminates polyhedra with

holes because a surface with a hole is defined by two polygons where one of them limits the face and
the other the hole. An example of this case is presented in Figure 3c. Another invalid case for this
condition is shown in Figure 3d.

According to the above definition some examples of valid and invalid polyhedra are shown in figure 3.

3. Definition of a Representational Language
In this section a formal presentation of a general framework for the definition of the kind of languages that
are used in this work is is presented. A language is a set of symbols and a set of rules to construct well-
formed expressions. We refer to the expressions of the language that denote individuals of different
geometrical kinds as graphical terms, or simply terms. The interpretation of a composite expressions is
computed according to Frege's Principle of Compositionality [Dowty81]. This principle states that the
interpretation of a composite expression depends on the interpretations of its constituting parts and their

                                                       
1Thick lines represent the edges referred to by the condition.

(a)
invalid for condition (i)

(c)
invalid for condition (iii)

(d)
invalid for condition (iii)

(e)
valid

(f)
valid

(b)
invalid for condition (ii) if 

A
B

 A and  B are considered
as two faces

Figure 3  VALID AND INVALID POLYHEDRA . (a), (b), (c) and (d) are invalid polyhedra. (e) and (f) are valid
polyhedra. The marked face in polyhedron (f) is considered with six sides according to condition (i).



mode of grammatical combination. The interpretation of a language is relative to a formal model in the
logical sense. In order to define a language it is required to specify its syntax and semantics.

3.1 Syntax of a Language
The syntax of a language determines the structure of expressions. The syntactic elements of a language are:

A. A set of sorts,
B. A set of  basic expressions or symbols for each sort.
C. A set of  syntactic rules to construct well-formed expressions of the language.

We define the syntax of a language with a notation based on a combination of those in [Goguen78] and
[Dowty81], augmented with graphical considerations as shown in [Pineda89]. We distinguish basic and
composite sorts.  A composite sort is formed by others sorts and has the form s1 s2 ... sn ,s  where s1, s2, ..., sn,
s are sorts. The interpretation of an expression of a basic sort s is an object of sort s. For instance, the
interpretation of the symbol "3" of sort integer is the integer number -the abstract object- 3. The
interpretation of an expression of a composite sort s1 s2 ... sn,s is a function of sort As1 x As2 x ... x Asn → As,
where Ai  is the set of all objects of sort i. For instance, the interpretation of the operator symbol intersection
of sort line line,dot is a function with domain in Aline x Aline and range in Adot  (i.e. the intersection of two
lines is the dot in which the intersection takes place).

Let S be the set of  basic sorts and T the whole set of sorts.

The construction rules for the formation of sorts are as follows:
  1) If s∈S then s∈T.
  2) If s1, s2, ..., sn ∈T and s∈T  then s1 s2 ... sn,s ∈T.

The basic expressions are the constant and variable symbols of the language:
  1) For each sort s∈T, the set of constants of sort s is Cs.
  2) For each sort s∈S, the set of variables of sort s is Vs.

Note that the language have basic constants for every sort whether it is basic or complex, but only variables
of basic sorts are allowed, keeping the language  as a first order one.

The syntactic rules are as follows (the set of well-formed expressions of sort s is Es):
1. If α∈Cs, then α∈Es.

2. If µ∈Vs, then µ∈Es.

3. If τ1, ...,τn are elements of Es1, ..., Esn , respectively, and φ∈Cs1... sn,s,  then φ(τ1, ...,τn) ∈Es.

4. If µ1, ..., µn are elements of Vs1, ..., Vsn , respectively, and α∈Es,  then λ µ1, ..., µn  α ∈Es1... sn.,s.

5. If λ µ1, ..., µn  α ∈Es1... sn,s  and τ1, ..., τn are elements of Es1, ...,Esn, respectively, then
λ µ1, ..., µn α(τ1, ...,τn) ∈ Es.

6. If µ ∈ Vs and β∈ Ebool then ∃µ(β) ∈ Ebool.

7. If µ ∈ Vs and β∈ Ebool then ∀µ(β) ∈ Ebool.

3.2 Semantics of a Language
The semantics of a language defines the interpretation of the well-formed expressions. In order to define the
semantics we specify the following:
A. The model. A model is an ordered pair 〈A,F〉 where A (the domain) is a non-empty set of individuals,

and F is a set of functions which assign interpretations to all constant symbols of every sort.

B. The semantic rules determine the interpretation of a well-formed expression.



As functions in F assign a denotation to every constant, an assignment function g is introduced to assign
values to the variables. For this reason the intepretation of an expression of the language is relative to a
model M and an assignment function g.

Let the model M be defined as follows:

Let the domain of individuals be A = As1 ∪ As2 ∪ ... ∪ Asn , for all si∈S.

Let the set of functions F be {Fs1, ..., Fsn } for all si∈S, where Fsi  assigns an interpretation to every
element of Csi.

The semantic rules are the following (following [Dowty81] we use the notational convention [[α]]M,g for
representing the interpretation or denotation of an expression α relative to a model M and function g; a
function gv / k  is the same as g but assigns the value k to the variable v):
1. If α ∈ Cs, then [[α]]M = Fs(α).

2. If µ ∈ Vs, then [[µ]]M,g = g(µ).

3. If τ1, ..., τn are elements of Es1, ..., Esn, respectively, and φ ∈ Es1...sn,s, then [[φ(τ1, ..., τn)]]
M,g =

[[φ]]M,g ([[τ1]]
 M,g, ..., [[τn]]

 M,g ).

4. If µ1, ..., µn are elements of Vs1, ..., Vsn  , respectively, and α ∈ Es,  then [[λ µ1, ..., µn α ]]M,g  is
that function h from As1 x As2 x ... x Asn   into As such that for all objects k1, k2, ..., kn  in As1, As2,..., Asn,

respectively, h(k1, k2, ..., kn ) is equal to [[α]]M,g µ1/k1,...., µn/kn
 .

5. If λ µ1, ..., µn  α ∈Es1...sn.,s  and τ1, ...,τn are elements of Es1, ..., Esn, respectively, then [[λ µ1, ...,
µn α (τ1, ..., τn)]]

M,g = [[α(µ1/τ1, ..., µn/τn)]]
M,g.

6. If µ ∈ Vs and β∈ Ebool then [[∃µ(β)]]M,g =  iff for some value assignment g'such that g' is 
exactly like g except possibly for the individual assigned to µ by g', [[β]]M,g' = .

7. If µ ∈ Vs and β∈ Ebool then [[∀µ(β)]]M,g =  iff for every value assignment g'such that g' is 
exactly like g except possibly for the individual assigned to µ by g', [[β]]M,g' = .

The semanctic rule of interpretation relative to a model M is the following:

If α∈Es, then [[α]]M=as, where as∈As, if [[ α]]M ,g = as for every value assignment g.

3.3 Syntactic and Semantic Definition of Language L
Now the definition of language L for the representation of drawings is presented. A particular interpretation
domain A for a specific model M contains all graphical symbols that can occur in orthogonal views. (In the
following text, we use a notational convention by which individuals of the domain are written in normal text
and constant symbols of the object language in italics).

Let S be the set of basic sorts as follows:
S = { bool, view, integer, real, dot, line, iline, path, polygon, dot3d, line3d, path3d, polygon3d}

where
• bool represents the sort boolean
• view represents the sort orthogonal view
• integer representes the sort integer number
• real represents the sort real number
• dot represents the sort 2D dot
• line represents the sort 2D line segment
• iline represents the sort 2D infinite line
• path represents the sort 2D path
• polygon represents the sort 2D polygon
• dot3d represents the sort 3D dot
• line3d represents the sort 3D line segment



• path3d represents the sort 3D path
• polygon3d represents the sort 3D polygon

Let V be a denumerable set of variables of all basic sorts in S.

Let A be the set of individuals formed by the union of the following sets:
Abool    = { , }  is the set of boolean values.
Aview    = {top, front, right }
Areal     = {r | r is a real number}.
Ainteger  = {r  | r is an integer number}.
Adot         = {d1, d2, ... , dn}.
Aline     = {l 1, l2, ..., ln}.
Ailine    = {i 1, i2, ..., ln}.
Apath    = {empty, k1, k2, ..., kn}.
Apolygon  = {p1, p2, ..., pn }.
Adot3d, Aline3d, Apath3d , Apolygon3d  are finite sets of the corresponding kinds of objects.

Every set As has an "error" element such that errordot∈Adot, errorline∈Aline, etc. Similarly, every set Cs  has a
symbol that denotes the error element, for example, the symbol errordot is an element of Cdot and Fdot

(errordot)=errordot. Errors occur when the interpretations of expressions are partial functions [Pineda89,92].

Now we present some of the constant symbols of the language L and their denotations. Let the set of basic
constants C be formed by the union of the following sets, and their interpretations as follows (for simplicity,
we refer to function Fs  for some s only as F):

• The set Cbool  = { , } such that F( ) =   y F(  )= .

• The set Cview = {top, front, right} such that F(top)=top, F(front)=front and  F(right)=right.

• The infinite set of real numerals Creal  = {r1, r2, ... }, such that F(r)=real number r.

• The infite set of integer numerals Cinteger  = {n1, n2, ...}, such that F(n)=integer number n.

• The set Cdot  = {d1, d2, ... ,dn} such that F(di)=di.

• The set Cline  = { l1, l2, ... ,lm} such that F(l i)=li.

• The set Ciline   = {verAxis, horAxis, axis45}: the axes of orthogonal drawings..

• The set Cpath  = {empty, k1, k2, ..., kn} such that F(empty)=empty, F(ki)=ki.

• The set Cpolygon = {p1, p2, ..., pt} such that F(pi)=pi.

• Sets Cdot3d, Cline3d, Cpath3d, Cpolygon3d, are defined in a similar way as Cdot, etc.

• The set Cbool bool, bool = {∧, ∨, ⇒} of symbols whose denotations are the logical operations and, or and
implication, respectively.

• The set Cbool, bool  = {¬}, where the denotation of  symbol ¬ is the logical operation not.

• The set Creal,real = {rad} where the denotation of symbol rad is the function whose value is the equivalence
in radians of a given angle in degrees.

• The set Creal real, dot  = {dot}, where symbol dot denotes a function whose arguments are two real numbers
(interpreted as coordinate values x and y), and its value is the represented dot.

• The set Cdot dot, line  = {line}, where symbol line  denotes a function whose arguments are two dots and its
value is the line segment defined between them.

• The set Cdot real, iline  = {iline}, where symbol iline denotes a function whose argumens are a dot and an
angle -in radians- and its value is the infinite line passing through the dot and whose slope is equal to the
tangent of the angle.



• The set Cline path, path  = {path}, where symbol path denotes a function whose arguments are a line and other
path, and its value is the path resulting of concatenating the line and the path.

• The set Cpath, polygon  = {polygon}, where symbol polygon denotes a function whose argument is a path and
its value is a polygon if the path is closed.

• The set Cline,bool  = {hor, ver, inc}, where symbol hor denotes a function whose argument is a line and its
boolean value indicates whether the line is horizontal. Similarly for symbols ver and hor for vertical and
inclined lines, respectively.

• The set Cpolygon,path  = {path_of_polygon}, where symbol path_of_polygon denotes a function whose value
is the polygon interpreted as a path.

• The set Creal real real, dot3d  = {dot3d} constructs a 3D dot.

• The set Cdot3d dot3d, line3d  = {line3d} constructs a 3D line.

• The set Cline3d path3d, path3d  = {path3d} constructs a 3D path.

• The set Cpath3d, polygon3d  = {polygon3d} construct a 3D polygon.

• The set Cview view dot,iline  = {proj}, where symbol proj denotes a function whose arguments are two views and
a dot, and its value is the infinite line passing through the point that relates both views.

• The set Ciline line, dot  = { intersection} where symbol intersection denotes the following function:
intersection(xiline,yline) is the intersection dot of xiline and yline, if the dot belongs to Adot , and errordot

otherwise.

• The set Ciline iline, dot  = {intersection} defined similarly as intersection ∈ Ciline line,dot .

• The set Cdot dot, real  = {distance} where symbol distance denotes a function whose arguments are two dots
and its value is the distance between them.

• The set Cpath, line = {head} where symbol head denotes a function whose argument is a path  and its value is
the initial line in the definition of the path.

• The set Cpath, path  = {tail} where symbol tail denotes a function whose argument is a path and its value is
the path resulting from eliminating the first line of the argument path.

• The set Cdot polygon, bool = {dot_of_polygon} where symbol dot_of_polygon denotes a function whose
arguments are a dot and a polygon and its boolean value indicates whether the dot is on the boundary of
the polygon.

• The set Cline polygon, bool  = { line_of_polygon} where symbol line_of_polygon denotes a function whose
boolean value indicates whether the line belongs to the boundary of the polygon.

For practical purposes we define the control structure rule if-then-else as follows:

Additional syntactic rule:
  7.    If  δ∈Ebool  , α∈Es  and β∈Es  for some s∈T, then  if(δ, α, β) ∈Es .

Additional semantic rule:
  7.    If  δ∈Ebool  , α∈Es  and β∈Es  for some s∈T, then
                  [[if(δ, α, β)]]M  = [[α]]M   if [[δ]]M  =
                  [[if(δ, α, β)]]M  = [[β]]M   if [[δ]]M  = .

With this last definition we conclude the specification of our representational language. In the next section
we show how expressions denoting graphical entities, relations and graphical concepts of descriptive
geometry are formed and evaluated. In section 5 these expressions are used by the synthetic procedure which
produces the solid model out of the orthogonal views.



4. Linguistic Representation of Graphical Concepts for the Interpretation
of Orthogonal Views

In this section the graphical concepts that are required for the construction of the solid model of a
polyhedron are presented.

A particular orthogonal drawing is represented by a set Bdot of expressions denoting dots, a set Bline of
expressions denoting lines, a set Bpolygon of expressions denoting polygons and a set Biline of expressions
representing the vertical, horizontal and 45° axes.

Let TOP be the set of graphical entities in the top view.
Let FRONT be the set of graphical entities in the front view.
Let RIGHT be the set of graphical entities in the right-side view.
Let VER be the set of vertical lines.
Let HOR be the set of horizontal lines.
Let INC be the set of inclined lines.

4.1 Orthogonal Projections of a 3D Dot
As can be seen in Figure 4, a 3D dot always projects as a dot in any view. If the three orthogonal views are
given, as in Figure 5, the 3D dot they describe is defined in Expression 2 which denotes a function from Adot

x Adot x Adot into Adot3d. Graphical intities involved are shown in Figure 5.

Expression sort: dot dot dot, dot3d
 Fdot3d (vertex) =
 [[λxdot, ydot, zdot

       dot3d(distance(origenTop, intersection(iline(xdot, rad(90)), iline(origenTop, 0))),
                distance(origenTop, intersection(iline(xdot, 0), iline(origenTop, rad(90)))),
                distance(origenFront, intersection(iline(ydot, 0), iline(origenFront, rad(90)))))
   )]]M

Expression 2  3D DOT  FROM  THREE ORTHOGONAL PROJECTIONS. xdot ∈TOP, ydot ∈FRONT, zdot ∈RIGHT are assumed.
The three dots are assumed projections of a 3D dot.

Top view

Front viewl
Right-side view

Figure 4  Orthogonal Projections of a Dot.
origenFront

d1

d2
d3

iline(d1,rad(90))

iline(origenFront,0)

iline(d1,0)

iline(origenTop,rad(90))

origenTop

iline(d2,0)

iline(prigenTop,0)

dy

dz

dx

Figure 5  INTERPRETATION OF ORTHOGONAL PROJECTIONS OF A

DOT. Distances dx, dy, dz are the coordinate values x,y,z,
respectively, of the 3D dot. Dots origenTop and origenFront
represent the origin of the tridimensional coordinate system.



4.2 Orthogonal Projections of  an Edge
An edge can be classified as normal edge, inclined edge or oblique edge depending on the relations it has
with the planes of projection.

A normal edge is a line that is perpendicular to a plane of projection. It appears as a point in the plane of
projection to which it is perpendicular and as a line in true length on adjacent planes of projection. In Figure
6 the three possible configurations of projection of a normal edge are illustrated.

An inclined edge is a line that is parallel to a plane of projection but inclined to adjacent planes. It appears
as a line in true length on the plane to which it is parallel and foreshortened on adjacent planes. In Figure 7
the three possible configurations of the projections of an inclined edge are illustrated.

An oblique edge is a line that is oblique to all planes of projection. Since it is not perpendicular to any plane,
it cannot appear as a dot in any view. It always appears as an inclined line in all views. In Figure 8 this case
is shown.

l2

l1

l3

l1 perpendicular to top plane

b) Orthogonal projections of normal edge
l2 perpendicular to front plane

c) Orthogonal projections of normal edge 
l3 perpendicular to right plane

a) Orthogonal projections of normal edge

Figure 6  Orthogonal projections of a normal edge.



As an example of the kind of expressions we model through the language L that involve the concepts above,
consider Figure 9. The term defined in Expression 3 denotes a function from Aline x Aline x Aline  into Aline3d

that computes the 3D oblique line from its projections. In Figure 9 some subexpressions involved are shown.

a) Orthogonal projections of inclined 
edge l1 parallel to top plane

b) Orthogonal projections of inclined
edge l2 parallel to front plane

c) Orthogonal projections of inclined
edge l3 parallel to right plane

l1

l2 l3

Figure 7  Orthogonal projections of an inclined edge.

l

Orthogonal projections of oblique  
edge l 

Figure 8  Orthogonal projections of an oblique  edge.



Expression sort: line line line, line3d
 Fline3d  (obliqueLine) =
 [[ λxline, yline, zline   line3d(vertex(left(xline), left(yline), intersection(proj(front, right, left(ylline)), zline)),
                                      vertex(right(xline), right(yline), intersection(proj(front, right, right(yline)), zline)))
 ]]M

Expression 3   3D OBLIQUE LINE FROM  ITS ORTHOGONAL PROJECTIONS. xline ∈ TOP ∩ INC, yline ∈ FRONT ∩ INC,
zline  ∈ RIGHT ∩ INC, are assumed. The three lines are assumed projections of a 3D line.

Similar expressions are defined for each of the three cases of  normal and inclined edges.

4.3 Orthogonal Projections of  a  Plane Polygonal Surface
A surface can be classified as normal surface, inclined surface or oblique surface depending on the relations
it has with the planes of projection.

A normal polygonal surface is a plane polygonal surface that is parallel to a plane of projection. It appears as
a polygon in true size and shape on the plane to which it is parallel, and as a vertical or horizontal line on
adjacent planes. In Figure 10 the three possible configurations of the projections of a normal polygonal
surface are illustrated.

An inclined polygonal surface is a plane polygonal surface that is perpendicular to one plane of projection
but inclined to adjacent planes. An inclined surface appears as an inclined line on the plane to which it is
perpendicular, and as a polygon on the others. In Figure 11 the three possible configurations of the
projections of an inclined polygonal surface are illustrated.

An oblique polygonal surface is a plane surface that is oblique to all planes of projection. Since it is not
perpendicular to any plane, it cannot appear as a line in any view. It always appears as a polygon in any
view. In Figure 12 this case is illustrated.

ly lz

left(ly)

proj(front,right,right(ly))

proj(front,right,left(ly))

lx

left(lx)

right(lx)

right(ly)

Figure 9  Interpretation of the orthogonal projections of an
oblique edge.



a) Orthogonal projections of normal
surface p1 parallel to top plane

b) Orthogonal projections of normal
surface p2 parallel to front plane

c)Orthogonal projections of normal
surface p3 parallel to right plane

p1

p2 p3

Figure 10  Orthogonal projections of a normal  polygonal surface.

b) Orthogonal projections of inclined
surface p2 perpendicular to front
plane

a) Orthogonal projections of inclined
surface p1 perpendicular to top 
plane

c) Orthogonal projections of inclined
surface p3 perpendicular to right
plane

p1

p2p3

Figure 11  Orthogonal projections of an inclined polygonal surface.



For each of the 7 cases presented above (3 for normal surfaces, 3 for inclined surfaces and 1 for oblique
surfaces) four expressions are defined. These four expressions are used in the process of constructing the
solid model. In general, the first expression denotes a function whose arguments are two objects (lines or
polygons) of different views and its boolean value indicates whether the two objects can be projections of a
surface. The second expression denotes a function whose arguments are three objects (lines or polygons), one
of each view, and its boolean value indicates whether they are projections of a surface. This expression
assumes that two of the arguments actually can be projections of a surface (i.e. they have been already tested
by the first expression). The third and fourth expressions denotes together a function whose arguments are
three objects (lines or polygons), one of each view, and its value is the surface (3D polygon) whose
projections are the arguments of the function.

As an example of the four expressions, consider the case of a normal surface parallel to the top plane
illustrated in Figure 10a. In Figure 13 the conditions that objects in differents views must satisfy for being
considered as projections of a normal surface within a drawing context are illustrated. The boolean function
defined in Expression 4 has as its arguments a polygon in the top view and a line in the front view, and its
value indicates if both objects can be projections of a normal surface parallel to the top plane, within a
drawing context. What these terms evaluates can be summarized in the following phrase: Each dot of the
polygon has a corresponding -explicit- dot on the line. In other words, each vertex of the surface must be
projected as a dot on the line that is its front projection.

p

Orthogonal projections of oblique
surface p

Figure 12  Orthogonal projections of an oblique polygonal surface.



Expression sort: polygon line, bool

Fbool (polTop_lineFront _projectionsOf_normalSurfParallelToTopPlane) =
 [[λxpolygon, xline   ∀wdot (dot_of_polygon(wdot, xpolygon ) →
                                      intersection(proj(top, front, wdot), yline)  ≠ errordot  ]]

M

Expression 4  A  POLYGON AND A LINE ARE PROJECTIONS OF A NORMAL SURFACE PARALLEL TO THE TOP PLANE.
xpolygon ∈TOP, yline ∈FRONT ∩ HOR are assumed.

Once a polygon in the top view and a line in the front view are evaluated for being projections, and given a
second line in the right-side view, the boolean function defined in Expression 5 indicates whether the second
line, together with the polygon and the first line, are projections of a normal surface. This term assumes that
the first two arguments are projections and evaluates whether the two lines are colinear and each dot of the
polygon has a corresponding -explicit- dot on the line in the right-side view.

Expression sort: polygon line line,bool

Fbool (polTop_lineFront _lineRight_projectionsOf_normalSurfParallelToTopPlane) =
 [[λxpolygon, yline, zline

        colinear(yline, zline) ∧
     ∀wdot (dot_of_polygon(wdot, xpolygon)→intersection(proj(top, right, wdot), zline) ≠ errordot ) ]]

M

Expression 5  A POLYGON AND TWO LINES ARE PROJECTIONS OF A NORMAL SURFACE PARALLEL TO THE TOP VIEW. xpolygon

∈TOP, yline ∈FRONT ∩ HOR, zline ∈RIGHT ∩ HOR are assumed. xpolygon and yline are assumed projections of a surface.

1

2

34

5

6

(a)

1 2

3

45

6

6
1

5

2
4

3 4 3
6

1
25

(b)

(c)

1 2

3

45

6

6 3 4 1
25

S

Figure 13  ORTHOGONAL PROJECTIONS OF A NORMAL SURFACE PARALLEL TO THE TOP VIEW WITHIN

A CONTEXT. (a) Surface S. (b) The line defined from dot 6 to 3 in the front view can be a
projection of surface S because all vertex of S are projected on it. (c) The line defined from
dot 6 to 3 in the front view cannot be a projection of surface S because its vertex 1, 2, 5, 6 are
not projected on it.



The term defined in Expression 6 denotes a function whose arguments are a polygon and two lines, and its
value is the surface (3D polygon) whose projections are the arguments. This expression assumes that the
three objects are projections of a surface. Expression 6 is basically formed by Expression 7.

Expression sort: polygon line line, polygon3d

Fpolygon3d (normalSurfaceParallelToTopPlane) =
[[λxpolygon, yline, zline   polygon3d(normalPathParallelToTopPlane(path_of_polygon(xpolygon), yline, zline)) ]]

M

Expression 6  NORMAL SURFACE PARALLEL TO THE TOP VIEW FROM ITS ORTHOGONAL PROJECTIONS. xpolygon ∈TOP,  yline

∈FRONT ∩ HOR, zline ∈RIGHT ∩ HOR are assumed. xpolygon , yline   and  zline  are assumed projections of a surface.

The term defined in Expression 7 denotes a function whose arguments are a path (actually, a polygon seen
as a path) and two lines, and its value is the 3D path they represent. This term recursively evaluates the path
line by line. To illustrate this evaluation process consider the simplest example of the projections of a normal
surface shown in Figure 14. As can be seen, if the line in question -of the path- is vertical then the
projections in front and right-side views must be a dot and a horizontal line, respectively, which correspond
to the projections of a normal edge perpendicular to the front plane (Figure 6b). If the line is horizontal then
the projections in front and right-side views must be a horizontal line and a dot, respectively, which
correspond to the projections of a normal edge perpendicular to the right-side plane (Figure 6c). If the line is
inclined then the corresponding projections in front and right-side views are two horizontal lines, which
correspond to the projections of an inclined edge parallel to the top plane (Figure 7a).

Expression sort: path line line, patht3d
 Fpath3d (normalPathParallelToTopPlane) =
 [[ λxpath, yline, zline

     if (xpath = empty,
          empty,
          path3d(first3DLine(head(xpath), yline ,zline), normalPathParallelToTopPlane (tail(xpath), yline, zline))) ]]

M

Expression 7  NORMAL SURFACE (AS  A PATH) PARALLEL TO TOP PLANE FROM ITS ORTHOGONAL PROJECITONS. xpath ∈TOP,
yline ∈FRONT ∩ HOR, zline ∈RIGHT ∩ HOR are assumed. xpath, yline and zline are assumed projections of a surface.

The symbol first3Dline denotes the function defined in Expression 8 (for clarity, we do not include the
funcion defined in Expression 8 into Expression 7). This function has as its arguments the line in question
of the evaluating path in the top view, and the two lines in the front and right-side views, and its value is the
3D line whose projections are the line in the top view -first argument- and two objects (a dot and a line or
two lines) obtained from the lines in the second and third arguments. This function is based on the analysis

ly

px

lz

Figure 14  Projections of a normal suface.



above with Figure 14. Operator symbols NormalEdgePerpendicularToFrontPlane,
NormalEdgePerpendicularToRightPlane and InclinedEdgeParallelToTopPlane denote functions of
sorts Aline x Adot x Aline→Aline3d , Aline x Aline x Adot →Aline3d  and Aline x Aline x Aline→Aline3d , respectively,
whose values are edges of the sorts described in the names of the functions. These functions are defined in a
similar way as the function in Expression 3.

Expression sort: line line line, line3d
Fline3d (first3DLine)=
 [[ λxline, yline, zline   
                 if(ver(xline),
                     NormalEdgePerpendicularToFrontPlane(
                                    xline,
                                    intersection(proj(top, front, up(xline)), yline),
                                    line(intersection(proj(top, right, up(xline)), zline),

                                    intersection(proj(top, right, down(xline)), zline))),
                     if(hor(xline),
                         NormalEdgePerpendicularToRightPlane(
                                        xline,
                                        line(intersection(proj(top, front, left(xline)), yline),
                                              intersection(proj(top, front, right(xline)), yline)),
                                        intersection(proj(sup, right, right(xline)), zline)),
                         InclinedEdgeParallelToTopPlane(
                                         xline,
                                         line(intersection(proj(top, front, left(xline)), yline),
                                                intersection(proj(top, front, right(xline)), yline))),
                                         line(intersection(proj(top, right, up(xline)),zline),
                                                intersection(proj(top, right, down(xline)), zline))))) ]]

M

Expression 8  xline ∈TOP, yline ∈FRONT ∩ HOR, zline ∈RIGHT ∩ HOR are assumed.

Similar expressions for six remaining cases of surfaces are defined in a similar way.

5. Generation of the Solid Model
In this section the process of building up the model of a polyhedron is illustrated with the help of an
example. Consider the synthesis of the polyhedron in Figure 15b which is described by the views in Figure
15a.



For the construction process it is neccesary to distinguish between visible and hidden polygons. A polygon in
a view is considered to be visible if it does not contain any other polygon inside it; for instance, the polygon
defined by dots d1, d2, d4, d6, d5 in Figure 15a is visible. Otherwise, a polygon is considered hidden. The
polygon defined by dots d1, d3, d7, d5 in Figure 15a (the bottom of the polyhedron) is an instance of the
latter case. A hidden polygon is interpreted as a projection of an obstructed surface. A visible polygon can be
interpreted as a projection of a non-obstructed surface, as a projection of an obstructed surface whenever
projections of the obstructed and obstructing surfaces are the same polygon, or as a projection of surface that
is partially obstructed. This last case is illustrated in Figure 16.

Figure 16  Partially obstructed surface.

The validity conditions of the kind of polyhedra that is considered in this paper were shown in Section 2
(illustrated in Figure 3), and are the following:

  i) Each edge of a polyhedron must be shared exactly by two surfaces.
 ii) Two adjacent surfaces of a polyhedron must not lie on the same plane.
iii ) A surface of a polyhedron must be exactly one polygon.

For the construction of a polyhedron the following constraints are considered:
I) Each edge of a polyhedron must be shared exactly by two surfaces (condition i).

II ) Two adjacent surfaces of a polyhedron must not lie on the same plane (condition ii ).
III ) Two surfaces of a polyhedron must not intersect.
IV) Two surfaces of a polyhedron must not overlap.
V) A suface whose projection on a view is a visible polygon is nearer to the plane of projection than any

other surface whose projection on that view is a hidden polygon.
VI) A surface of a polyhedron must be exactly one polygon (condition iii ).

VII) A surface is always either normal, inclined or oblique in relation to the planes of projection.

Condition IV can be considered as a particular situation of condition II  because two overlapping surfaces can
be seen as several adjacent surfaces lying on the same plane; This condition is explicitly included because
the occurence of two overlapping surfaces is possible during the construction process. Condition III  is

d2d1 d3

d4

d5 d6 d7

(a) (b)

Figure 15  Views of a polyhedron.



included because two intersecting surfaces violate condition I or VI. Conditions I to V are verified during the
construction process, while conditions VI and VII are implicitly considered in the procedure, as will be seen
below.

In general, the construction process consists in obtaining a surface from the views and adding it to the set of
surfaces of the 3-D model which is formed incrementally. Whenever a surface is added to the set, conditions
I to V have to be satisfied. The process consists of four parts: First, for each visible polygon in the top view a
surface is obtained according to condition VII (and considering condition VI implicitly), such that the set of
all surfaces obtained in this way satisfies conditions I to IV. The second and third parts are similar for
polygons in the front and right views, respectively. In the fourth part of the synthetic process the surfaces
resulting from hidden polygons in the views or from visible polygons interpreted as obstructed surfaces are
added, one at a time, verifying the validity conditions from I to V. When all edges of the constructed
polyhedron satisfy condition I it must be verified that the orthogonal projections in the given three views
correspond to the projections of the resulting polyhedron. This last verification assures that the method is
sound.

As a notational convention we define the set of maximal lines of a  view to be the largest set including all
line segments which can be extracted from the view such that no two lines in the set satisfy the following
two conditions: (1) they are adjacent and colinear and (2) they are colinear and overlapping. For instance,
the set of maximal lines in the top view in Figure 15a is {line(d1,d3), line(d3,d7), line (d7,d5), line(d5,d1),
line(d3,d6), line (d2,d4)}, but the lines line(d1,d2) and line(d2,d3) cannot be in the set for condition (1), and
lines line(d1,d3) and line(d2,d3) for condition (2). Given an orthogonal drawing the sets MLT, MLF and
MLR are the maximal lines sets for the top, front and right-side views, repectively.

Next, an overview of the construction procedure is presented. Consider P to be the set of surfaces of the
polyhedron. P is initially empty.

Part I of the process consists in obtaining the surfaces resulting from visible polygons in the top view (i.e.
projections of surfaces that are visible from the top plane). Once a polygon p is selected a surface s is sought
by considering one of the following four cases (the fifth case considers that the polygon is a projection of a
partially obstructed surface from that view −as shown in Figure 16):

  T1.  s is a normal surface parallel to the top plane (illustrated in Figure 10a).
  T2.  s is an inclined surface perpendicular to the front plane (illustrated in Figure 11b).
  T3.  s is an inclined surface perpendicular to the right plane (illustrated in Figure 11c).
  T4.  s is an oblique surface (illustrated in Figure 12).
  T5.  s is not a visible surface from the top plane (s is a partially obstructed surface).

These are all the cases where a surface is projected as a visible polygon in the top view and are graphically
illustrated in Figure 17.

Normal Surface Parallel
to Top Plane

p

...... ... ...gf gr

RULE 1.a

Inclined   Surface
Perpendicular to Front
Plane

p

gr

...

...

gf

RULE 1.b

Inclined   Surface
Perpendicular to Right
Plane

...

p

gf

gr

...

RULE 1.c

Oblique Surface

p

grgf

RULE 1.d

Not Visble Surface

The surface is
considered partially
obstructed where the
polygon in the top view
corresponds to the
projection of a part of
the surface. (see Figure
16).

RULE 1.e

Figure 17 Possible projections of a surface with a polygon in the top view. Labels at the bottom of drawings refer to the
rules (defined in Figure 18) required to obtain the corresponding graphical objects in the front and right views.



For case T1 to hold two horizontal lines must appear as the front and right projections of the surface, as can
be seen in the first case of Figure 17. These lines must be identified in the corresponding views. For this
purpose a rule is defined for each of the four cases (the fifth case does not correspond to a visible surface).
Rules 1a and 1b are shown in Figure 18 and the remaining rules are defined in a similar fashion.

Figure 18   Examples or rules to obtain projections in the front and right views
given a polygon in the top view.

As can be seen in RULE 1a, a horizontal maximal line gf in the front view is chosen such that the polygon p
in the top view and gf are projections of a normal surface parallel to top plane. This is verified with the
expression (E1) whose functional definition is shown in Expression 4:

(E1)              polTop_lineFront_projectionsOf_normalSurfParallelToTopPlane(p, gf)

If no line in the set MLF ∩ HOR satisfy (E1) case T1 as a whole does not hold, and another case is selected.

Once a line gf in the front view is selected a horizontal maximal line gr in the right-side view is selected in a
similar way. Then it is verified that the three graphical objects can be projections of the surface evaluating
the expression (E2) (for the definition of the functional operator see Expression 5):

(E2)              polTop_lineFront_lineRight_projectionsOf_normalSurfParallelToTopPlane(p, gf , gr).

If expressions E1 and E2 hold for the graphical objects p, gf and gr then the surface s is obtained. This is
done evaluating the expression corresponding to the case of a normal surface parallel to top plane: (see
definition in Expression 6):

 (E3)              normalSurfaceParallelToTopPlane(p,gf ,gr).

Similar expressions are employed for the definition of rules 1b to 1d.

For every surface s obtained by this procedure if the set P ∪{ s} satisfy constraints from I to IV s is included
in P. In case a surface s cannot be included in P through case T1, cases T2 to T4 are tried out. If none of
these cases hold the current polygon is a projection of a partially obstructed surface (case T5 is assumed and
no surface is obtained from polygon p).

RULE 1.a   Normal Surface Parallel to Top Plane
Let p be a visible polygon in the top view.

Select gf from HOR ∩ MLF (a horizontal maximal line in frontal view) such that
[[polTop_lineFront_projectionsOf_NormalSurfParallelToTopPlane(p, gf)]]= ,

i.e. p and  gf can be projections of a normal surface.

Select gr from HOR ∩ MLR (a horizontal maximal line in the right view) such that
[[polTop_lineFront_lineRight_projectionsOf_NormalSurfParallelToTopPlane(p, gf, gr)]]= ,

i.e. p, gf, gr can be projections of a normal surface.

RULE 1.b   Inclined Surface Perpendicular to Front Plane
Let p be a visible polygon in the top view.

Select gf from INC ∩ MLF (an inclined maximal line in frontal view) such that
[[polTop_lineFront_projectionsOf_InclinedSurfPerpToFrontPlane(p, gf)]]= ,

i.e. p and  gf can be projections of an inclined surface.

Select gr from Cpolygon ∩ RIGHT (a polygon in the right view) such that
[[polTop_lineFront_polRight_projectionsOf_InclinedSurfPerpToFrontPlane(p, gf, gr)]]= ,

i.e. p, gf, gr can be projections of an inclined surface.



At this stage of the computation, all surfaces that can be extracted from visible polygons in the top view are
included in P. Parts II and III of the process obtain surfaces visible from the front and right views which
were not obtained before in a similar fashion.

The cases for visible polygons in the front view are (Part II):

  F1.  s is a normal surface parallel to the front plane (illustrated in Figure 10b).
  F2.  s is an inclined surface perpendicular to the top plane (illustrated in Figure 11a).
  F3.  s is an inclined surface perpendicular to the right plane (illustrated in Figure 11c).
  F4.  s is an oblique surface (illustrated in Figure 12).
  F5.  s is not a visible surface from the front plane (s is a partially visible surface).

And the cases for visible polygons in the right view are (Part III):

  R1.  s is a normal surface parallel to the right plane (illustrated in Figure 10c).
  R2.  s is an inclined surface perpendicular to the top plane (illustrated in Figure 11a).
  R3.  s is an inclined surface perpendicular to the front plane (illustrated in Figure 11b).
  R4.  s is an oblique surface (illustrated in Figure 12).
  R5.  s is not a visible surface from the right plane (s is a partially visible surface).

Part IV of the synthetic procedure consists in identifying the surfaces that are hidden from the three
orthogonal views. This procedure consists in finding out the surfaces required to close the current
polyhedron. For this purpose all edges of the polyhedron (formed with the surfaces in set P) that belong
exactly to one surface are identified as the set R. As each edge must belong exactly to two surfaces according
to condition I, it is required to find an additional surface for each edge in R. For each edge its three
orthogonal projections are computed and the result of this computation is matched against the views. For
this process it is important to highlight that all hidden polygons of all the three views that have the reference
edge as one of its sides must be considered. The projections of the edge must be included in the projections
of the surface sought (i.e. the edge must bound the surface).

For instance, consider the case of a normal edge perpendicular to top plane (l1 in Figure 6a). This kind of
edge can only bound surfaces of the three following kinds:

- normal surface parallel to front plane (Figure 10b)
- normal surface parallel to right plane (Figure 10c)
- inclined surface perpendicular to top plane (Figure 11a)

These cases are illustrated in the first row of Figure 19 where the projections of the edge are enclosed with
dashed lines. If the projections of an edge are of kind L1 in Figure 19 then one of the cases S1 to S3 must
hold. The case that matches identifies the projections of a surface and as a consequence the surface itself. If
the resulting surface satisfies conditions I to V (condition V is satisfied if no visible surface −obtained in
Parts I, II and III of the process− is obstructed by the surface obtained) it can be included in P. We repeat
this procedure until all edges in R are shared by two surfaces. If all edges in R are tried out but not all of
them are shared by exactly two surfaces another solution must be sought. If there is no solution which satisfy
the conditions the three given views do not correspond to a valid polyhedron.



KIND OF SURFACE

KIND OF EDGE S1 S2 S3

L1
Normal Edge Perp.
to Top Plane

Normal Surface Parallel to
Front Plane

... ...

...

...

Normal Surface Parallel to
Right Plane

...

...

...

...

Inclined Surface Perp. to Top
Plane

...

...

L2
Normal Edge Perp.
to Front Plane

Normal Surface Parallel to Top
Plane

...... ... ...

Normal Surface Parallel to
Right Plane

...

...

...

...

Inclined Surface Perp. to Front
Plane

...

...

L3
Normal Edge Perp.
to Right Plane

Normal Surface Parallel to Top
Plane

... ... ......

Normal Surface Parallel to
Front Plane

... ...

...

...

Inclined Surface Perp. to Right
Plane

...

...

Figure 19  Cases where a normal edge can bound a surface.

The synthetic process of the 3D model is exemplified with the generation of the polyhedron in Figure 15b.
The construction procedure for the visible polygons (Parts I to III) is shown in the tree search space in
Figure 20. When this process is completed, the process mentioned above to include the hidden surfaces is
carried out. As can be seen, the process is quite simple and the procedure can handle the construction of
solid models of the kind defined above in Section 1 and 2. Further details of the specific construction rules
are given in [Garza95].

Finally, it can be mentioned that as the construction rules take into account all possible cases in which a
surface can be generated, and that conditions I to VII rule out all configurations of surfaces that do not
conform to a valid polyhedron, we can be confident that the method is sound. For the same reason if a set of
projections determine a valid polyhedron this will be included in the search space and subsequently we can
be confident that the procedure is complete. The search space, however, might be very large. A gross
measure of it in terms of the number of surfaces can be approached if it is considered that the maximum



depth of the space is the same as the number of surfaces, and the branching factor at the main decision level
(i.e. whether a surfaces is included or not) is four because given a polygon in one of the views there are only
four possible kinds of surfaces of which the polygon is a projection. However, given the constraints imposed
by conditions I to VII this exponential figure can be significantly reduced.

Empty set

Second surface from
top view

First surface from 
top view

Two possible surfaces from
a polygon in top view

Third surface from
top view: first
hypothesis

Third surface from
top view: second
hypothesis

First surface from
front view

Second surface from
front view

First surface from
front view

First surface from
right-side view

Second surface from
front view

Two adjacent surfaces on
the same plane

Violation of constraint:

Three remaining hidden surfaces 
to complete polyhedron

Figure 20  Construction process of the polyhedron shown in Figure 15.



6. Conclusions
In this paper a procedure for constructing 3D models of polyhedra from their orthogonal views has
been presented. While previous approaches to the problem are based on quantitative algorithms, the
qualitative method presented here resembles intuitive reasoning processes used in human drafting
practices. The construction procedure was designed to model a graphical reasoning process with
natural constraints. To support the task a representational language expressive enough for modeling
drafting concepts and procedures of descriptive geometry has been presented. The language is a
multi-sorted first-order logical language with equality augmented with functional abstraction and
extends the graphical an logical representational languages developed with the GRAFLOG system
[Pineda89,91,92]. It has been shown how graphical entities and relations constituting the orthogonal
views can be represented through expressions of the language. Similarly, the expressions representing
graphical concepts required for the interpretations of the views in the construction of the solid model
have been presented. Finally a construction procedure for the production of the solid which resembles
intuitive processes employed in human drafting practices has been illustrated. The logical language
and its interpretation process has been fully implemented. All drafting concepts for the interpretation
of 3D dots, lines and polygons out of the 2D entities in the orthogonal views have also been tested.
The final construction procedure outlined in Section 5 is currently being implemented. The present
research is a case of study for the more general problem of reasoning with graphical representations.
Our results support the hypothesis that graphical concepts can be represented in an abstract fashion
through the lambda calculus allowing us to contemplate the integration of graphical and linguistic
concepts in a common representational formalism.

References
[Dowty81] D. R. Dowty, R. E. Wall, S. Peters. "Introduction to Montague Semantics". D. Reidel

Publishing Company, Dordrecht, Holland, 1981.

[Garza95] E. G. Garza “Síntesis de poliedros a partir de sus vistas ortogonales: un caso de
estudio en razonamiento gráfico”, Msc. Thesis, ITESM Campus Morelos, 1995.

[Goguen78] J. A. Goguen, J. W. Thatcher, E. G. Wagner. "An Initial Algebra Approach th the
Specification, Correctness and Implementation of Abstract Data Types". Current
Trends in Programming Methodology, ed R.t. Yeh, vol IV, pp. 80-149, Prentice-Hall.
1978.

[Haralick82] R. M. Haralick, D. Queeney. "Understanding Engineering Drawings". Computer
Graphics and Image Processing, 20:3, pp. 242-525. 1982.

[Idesawa73] Masanori Idesawa. "A System to Generate a Solid Figure from Three View". Bull.
JSME 16, pp. 216-225. 1973.

[Lafue76] Giles Lafue. "Recognition of Tthree-dimensional Objets from Ortographic Views".
Computer Graphics, Vol. 10, No. 2. 1976.

[McCarthy77] McCarthy.

[Nagendra88]I. V. Nagendra, U. G. Gujar. "3-D objects from 2-D orthographic views -a survey".
Computer and Graphics Vol 12, pp. 111-114. 1988.

[Pineda89] L. A. Pineda. "GRAFLOG: A Theory of Semantics for Graphics with applications to
Human-Computer Interaction and CAD Systems", 1989. Ph.D. thesis, University of
Edinburgh.

[Pineda92] L. A. Pineda. "Reference, Synthesis and Constraint Satisfaction", Eurographics'92
Conference Proceedings, Cambridge, U. K. 1992.



[Preiss84] K. Preiss. "Constructing the solid representation from engineering projections".
Computers and Graphics 8, pp 381-389. 1984.

[Sakurai83] H. Sakurai, D. C. Gossard. "Solid model input through orthographic views".
ACM/SIGGRAPH 17,  pp. 243-252. 1983.


