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Universidad Nacional Autónoma de México
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Abstract. Previous evaluations of gesture recognition techniques have been
focused on classification performance, while ignoring other relevant issues
such as knowledge description, feature selection, error distribution and learning
performance. In this paper, we present an empirical comparison of decision
trees, neural networks and hidden Markov models for visual gesture recognition
following these criteria. Our results show that none of these techniques is a
definitive alternative for all these issues. While neural nets and hidden Markov
models show the highest recognition rates, they sacrifice clarity of its knowledge;
decision trees, on the other hand, are easy to create and analyze. Moreover, error
dispersion is higher with neural nets. This information could be useful to develop
a general computational theory of gestures. For the experiments, a database of 9
gestures with more than 7000 samples taken from 15 people was used.

Keywords: Gesture recognition, hidden Markov models, neural networks, de-
cision trees, human-machine interaction.

1 Introduction

Visual recognition of dynamic gestures is important for machines to naturally interact
with humans. Hidden Markov models (HMMs) and artificial neural networks (ANNs)
have become standard classification techniques in this problem. However, previous
efforts have focused on recognition performance [1], at the expense of feature selection,
learning performance, error distribution and clarity and comprehension of knowledge
representation. Notwithstanding, accurate recognition is not the only factor to take into
account for developing computational models and for judging knowledge representa-
tion techniques.

In this paper we present a set of experiments to evaluate ANNs, HMMs and decision
trees (DTs) to recognize gestures following the criteria mentioned above. Decision trees
have become a cornerstone in many pattern classification problems; however, it is not
a commonly used technique to represent dynamic gestures. Our experimental results
show that ANNs and HMMs obtained high recognition results, but sacrifice clarity,
while DTs are clearer, although have a marginal decrease in performance. We also
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present a gesture database with more than 7000 samples taken from 15 people and
executed with the person’s right-arm. These gestures are oriented to instruct a mobile
robot. We propose this database as a testbed for comparison of different techniques in
gesture recognition, as well as in machine learning and analysis of sequential data.

Section 2 discusses various techniques proposed for gesture recognition, and
previous experimental comparisons of these techniques. Section 3 briefly describes
DTs, ANNs and HMMs. Section 4 describes the gesture database used in our experi-
ments. Section 5 presents our experiments, results and analysis. Finally, in section 6 we
discuss our conclusions and future work.

2 Related Work

Recognition of dynamic gestures can be seen as a pattern classification problem; a wide
range of techniques have been used for this purpose, like temporal templates [2], com-
parison of body posture streams using Viterbi-based alignment [3] and dynamic time
warping. However, the most succesfull and widely used techniques for gesture recog-
nition are HMMs [4] and ANNs [1]. On the one hand, HMMs effectively represent
gestural phases via state transition probabilities, and noisy observations by means of
observation conditional probability functions. On the other hand, ANNs are success-
ful classifiers in many pattern recognition problems, due to their capability to model
complex pattern functions [5].

Some of the previous work have evaluated recognition performance of these tech-
niques. In [6] is presented a comparison between support vector machines and feed
forward neural nets for 13 mouse cursor movements executed by three people. In those
experiments, ANNs slightly outperformed support vector machines by 2% of recog-
nition rate. Corradini and Gross [1] present a comparison of three architectures based
on combinations of ANNs and HMMs, and dynamic time warping. Their database is
composed by 1350 samples of 6 gesture classes executed by 5 people. They obtained
better recognition results by combining HMMs and radial basis fuctions networks to
compute state probabilities. These authors state that due to the small training set their
results do not mean that one classifier always outperform the other. Surveys on gesture
recognition with comprenhensive reviews on gesture classification have been presented
as well [7,8]. Other comparison efforts have focused on extensive tests of different ges-
ture attributes using HMMs [9].

Decision trees have been frequently used to classify static gestures –or postures
[10,11]. However, its most important usage is in areas such as machine learning and
data mining to discover useful information in large size datasets. Despite its usefulness,
DTs is not commonly selected as a classifier to recognize dynamic gestures [12].

3 Classification Techniques

Decision trees are frequently used in classification problems where classes can be re-
presented by a set of features. DTs are a tree-based representation of a collection of
if-then rules. The antecedent part of a rule is composed by and operations between fea-
ture values. The consequent corresponds to the desired class or target. Following the
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tree representation, each node represents a unique feature. Each branch emerging from
the node represents one possible value of the feature. Leaves correspond to the values
of the class variable. Decision trees are constructed by iterative selection of the most
discriminative features [13]. Some features may not appear in the tree since they do
not provide with a large enough discriminative capability –i.e., attribute selection. This
technique allows us to represent continuous and categorical data, and its knowledge and
classification process is easy to interpret and understand.

Hidden Markov models are probabilistic models that represent statistical properties
of dynamic processes [15]. Dynamics is described in terms of the system states and
their transitions. States are not visible directly, they are estimated only through the ob-
servations generated by the process –states are “hidden”. HMMs suppose independence
of the future with respect to the past given the present, and that the probabilities do
not change over time. In gesture recognition, HMMs-based classifiers are frequently
constructed by training a single HMM for each gesture class. The parameters of a
HMM are computed through well-known training procedures such as the Baum-Welch
algorithm. For the recognition, the probability –or likelihood– of an observation se-
quence for each HMM is calculated using the Forward algorithm [15]. It can assumed
that the HMM with the highest probability correspond to the desired gesture class.

Artificial neural networks [5] are composed by a set of interconnected elements
called artificial neurons. Neurons are usually grouped into input, hidden and output
layers. When used as classifiers, a learning step consists on training neurons to be acti-
vated or inhibited given an input pattern. The activation of a neuron is propragated as
input to other neurons of the network. On testing, a given example is presented to the
input nodes, and the learnt responses are propagated through the network to the out-
put nodes. The activation states of the output neurons define the class of the original
input pattern. Common learning strategies include 3-layer topologies, backpropagation
learning to take into account error changes, sigmoidal activation functions for non-
linear neural responses, and adaptive number of hidden neurons.

4 Gesture Database

In this work we used a gesture database with a set of 9 dynamic gestures performed by
10 men and 5 women. Gestures were executed with the user’s right-arm –See Fig. 1.
The complete set of examples is composed of 7308 gestures. Every person contributed
a different number of samples; however, at least 50 samples of each gesture per person
were recorded 1.

Each sample is composed by the length T of the gesture observation sequence –that
ranges from 6 to 42 observations in the entire database– and the gesture data itself.
Every observation of the sequence is composed of: i) (x, y)-coordinates of the upper
and lower corners of the rectangle that segments the right-hand, ii) (x, y)-coordinates
of the upper and lower corners of the rectangle that segments the user’s torso, and iii)
(x, y)-coordinates of the center of the user’s face. These coarse posture data enable
us to convert the information to different feature sets easily [9]. All coordinates are

1 This database is available at:
http://sourceforge.net/projects/visualgestures/

http://sourceforge.net/projects/visualgestures/
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Fig. 1. Gesture set: a) come, b) attention, c) stop, d) right, e) left, f) turn-left, g) turn-right, h)
waving-hand and i) pointing; j) initial and final position for each gesture

relative to the usual upper-left corner of the image and assuming a resolution of 640 ×
480 pixels. Data were recorded on plain text files. Gestures were obtained using our
monocular visual system2 based on skin–color described in [16]. A spatial criterion
about the position of the hand was used to start and end the capture of each gesture
example. Every person executed his gestures in front of the camera at a distance of
aproximately 3m. Observations were sampled every 4 images at a rate of 30 images per
second.

5 Experiments and Results

5.1 Gesture Attributes

From the coarse posture information described in section 4 the following 7 gesture
attributes were extracted: a) 3 features to describe motion, and b) 4 to describe posture.
Motion features are Δarea –or changes in hand area–, Δx and Δy –or changes in hand
position of the XY -axis of the image. The conjuction of these three attributes allows
us to estimate hand motion in the Cartesian space XY Z . Each one of these features
takes only one of three possible values: {+, −, 0} that indicate increment, decrement
or no change, depending on the area and position of the hand in a previous image of
the sequence. For example, if the hand moves to the right, then Δx = +, if its motion
is to the left, Δx = − and if there is no motion in the X-axis, Δx = 0. Posture fea-
tures named form, above, right and torso describe hand appearance and spatial relations
between the hand and other body parts, such as the face and torso. Hand appearance is
represented by form. This feature is discretized into one of three values: (+) if the
hand is vertical, (−) if the hand is horizontal, or (0) if the hand is leant to the left or
right over the XY plane. right indicates if the hand is to the right of the head, above
if the hand is above the head, and torso if the hand is over the user’s torso. These fea-
tures take binary values, true or false, that represent if their corresponding condition is

2 Available at the same location of the gesture database.
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satisfied or not. The number of all possible combinations of these feature values is 648.
In this work, every feature observation ot is a vector of 7 features in the following order
(Δx, Δy, Δarea, form, right, above, torso). In this setting motion attributes requires
two consecutive observations to be calculated. This way, once features are extracted the
first observation is eliminated and hence the new length of the feature observation se-
quences is T − 1.

5.2 Data Preparation

To obtain a more compact representation of the gestures and avoid missing data, gesture
samples were normalized to 5 feature observations by subsampling the sequences at
equal intervals. Five is the minimum sequence length found in our feature sequences.
This preprocessing step is not unusual in gesture recognition [9,1]. We recorded our
gesture data in the following order: T, o1, o2, o3, o4, o5, where T is the original gesture
length before feature extraction and normalization, and o1, o2, o3, o4, o5 is the sequence
of feature observations. T was included as a feature for DTs and ANNs.

5.3 Experimental Setup

We used the J4.8 tree learning algorithm, that is a Java implementation of C4.5 [13], and
the 3-layer Perceptron implemented in the WEKA machine learning toolkit [17]. The
learning strategy of Weka for multilayer Perceptron include adaptation of the number
of hidden neurons and error backpropagation with gradient descendent. For HMMs,
a modified version implemented in [18] to consider multiple observation sequences
[15] was used. Training is performed using the Baum-Welch algorithm. Experiments
were carried out using a PC with an Intel Core 2 Duo 2.33Ghz processor and 2Gb
of RAM. These software suites were used to enable others to reproduce our experi-
ments. We conducted experiments to evaluate recognition results, knowledge descrip-
tion, feature selection, error distribution and learning capabilities of ANNs, DTs and
HMMs independently for each one of the participants. We did this for two reason:
i) to compare the behaviour of these models for different people, and ii) because it
has been suggested the need to construct personalized recognition systems for gesture
recognition [16].

For DTs, WEKA’s default parameters were used and no special setup was established
–e.g., confidence threshold for pruning to 0.25, and 2 as the minimum number of in-
stances per leaf. For ANNs we set learning rate parameter to 0.6 and the number of
epochs to train through to 100. HMMs were set to discrete uniform distributions for
observations and transition probabilities to follow a standard linear 5-state transition
topology. The EM algorithm with Forward and Backward logarithmic probabilities
was used to train HMMs. Convergence criteria are: 1) 10−26, as the minimum dif-
ference between two consecutives estimations of a HMM and, 2) 10, 000 as the max-
imum number of iterations to train each model. However, the latter criterion was not
observed to be triggered. For testing, the probability of each gesture sequence was
computed using the scaled version of the Forward algorithm. Training parameters were
selected arbitrarily; however, on various tests we observed that there is not a consid-
erable impact of these values on the recognition performance of the classifiers. For
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Fig. 2. Average recognition rates of 10 runs for each person using hidden Markov models, de-
cision trees and neural networks

example, by modifying the minimum training threshold of HMMs to 10−6, only the
number of training iterations is decreased, without affecting recognition rates signifi-
cantly.

Initially, for each person, we extracted 50 samples of each gesture to construct 15
personal databases. These examples are the base of all our experiments: from these 50
examples, we selected randomly 30 samples to construct the training data set, and the
remaining 20 samples for testing. The three models were trained and tested using the
same examples.

5.4 Results

We performed 10 repetitions of the previous experiment for each person. Following
this configuration, 150 DTs, 150 ANNs and 1350 HMMs –9 HMMs per classifier–
were constructed. Figure 2 shows the average recognition rates obtained with these
classification techniques. Average recognition rates of all the participants are 95.07%
for neural networks, 94.84% for HMMs and 87.3% for DTs. To analyze how classifica-
tion erros are distributed among classes we computed cumulative confusion matries by
adding the 150 individual confusion matrices of each model. Tables 1, 2, and 3 show
these matrices. Rows are true classes and columns corresponds to classification results.
Percentages on each row account for recognition results of 3000 classification tests.
Table 4 presents the best and worst case of: i) computational time used for training
and ii) the number of parameters required by the classifiers. For HMMs classifiers, the
number of parameters is fixed and stands for discrete observation distributions –640
parameters– of each state, plus transition probabilities –25 parameters– and initial state
distribution –5 parameters– for each one of the 9 hidden Markov models. Decision tree
parameters correspond to the number of tree nodes. Parameters of neural networks are
the number of connection weights between nodes required by networks with 122 and
155 hidden neurons in the best and worst cases, respectively. We conducted a visual in-
spection of these classifiers to give us an idea about the description capabilities of these
models.
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Table 1. Cumulative confusion matrix for recognition results of each person with HMMs. Ges-
tures are: C = come, A = attention, R = right, L = left, S = stop, T-L = turn-left, T-R = turn-right,
P = pointing, W-H = waving-hand. Percentage on each row corresponds to 3000 classification
tests.

C A R L S T-L T-R P W-H
C 95.1 0.7 0.57 1.33 1.43 0.87
A 0.87 94.83 0.47 0.7 0.13 3
R 0.13 99.17 0.17 0.03 0.5
L 0.17 93.83 6.0
S 1.93 0.47 0.07 90.63 0.87 6.03

T-L 0.1 0.1 0.03 0.1 99.47 0.03 0.17
T-R 0.17 0.03 0.03 99.67 0.07 0.03

P 1.6 0.1 5.37 0.67 0.07 91.87 0.33
W-H 0.47 3.43 0.2 6.7 0.03 0.03 0.1 89.03

Table 2. Cumulative confusion matrix for classification results of each person using DTs

C A R L S T-L T-R P W-H
C 85.73 0.87 2.97 0.13 4.1 0.5 2.87 2.83
A 2.13 87.67 0.23 0.97 6.4 0.77 1.83
R 0.47 0.17 97.33 0.6 1.43
L 0.77 96.73 0.67 1.83
S 4.13 1.67 0.57 87.37 0.70 0.10 1.47 4

T-L 4.37 8.5 4.23 0.73 80.7 1.13 0.13 0.2
T-R 6.73 0.83 4.33 1.23 85.03 1.60 0.23

P 6.70 0.03 4.77 0.47 0.23 86.77 1.03
W-H 5.27 5.03 1.07 7.20 1.07 0.2 0.03 80.13

5.5 Analysis

Recognition rates of the proposed techniques show that there are no considerable
differences between recognition rates of ANNs and HMMs. This is somewhat coin-
cident with previous comparisons of these classifiers, althought we are using neither
the same type of models, nor the same implementations. Recognition performance of
DTs is below the other classifers in all cases. However, results of DTs are positive
enough in accordance with their small number of parameters. Notwithstanding, more
experimentation must be executed to test different criteria for tree learning, and evalu-
ate its impact on the classification performance. An interesting case of low recognition
rate is woman3. We analyzed her individual confusion matrices. Misclassifications are
concentrated in attention and waving-hand gestures for the three models. By displaying
these gestures we found there are fairly similar examples of these classes –i.e., raising
the hand around the heads top with a little hand waving.

In addition to recognition rates, we used three different measures to quantify error
of these models. Results are presented on Table 5. The first one is Shannon’s entropy
[20] to evaluate error dispersion. This measure shows that dispersion for decision trees
is higher in comparison to HMMs and ANNs. However, entropy is sensible to the error
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Table 3. Cumulative confusion matrix for the recognition results of each person using ANNs

C A R L S T-L T-R P W-H
C 95.77 0.83 0.23 0.03 1.83 0.1 0.07 1.03 0.1
A 1.1 91.6 0.83 0.67 2.17 1.23 0.27 2.13
R 0.03 0.03 99.3 0.2 0.1 0.07 0.13 0.13
L 0.17 96.13 0.03 0.1 3.57
S 1.8 0.6 0.07 0.37 93 0.17 0.07 0.9 3.03

T-H 0.13 1.27 0.67 0.03 0.23 97.43 0.03 0.07 0.13
T-R 0.03 0.3 0.03 0.23 0.03 0.03 98.57 0.73 0.03

P 1.37 0.03 3.4 0.93 0.27 0.23 93.63 0.13
W-H 0.2 2.27 1.3 0.03 4.33 1.23 0.8 0.23 89.6

Table 4. Minimum and maximum number of parameters and training time (in seconds) for the
three classifiers

Number of parameters Training time (Sec)
Best case Worst case Best case Worst case

Hidden Markov models 29,070 1.03 849.83
Neural Networks 25,173 42,483 207.06 760.67

Decision trees 31 519 0.02 0.09

rate. To avoid this, we follow the method introduced by R. van Son to calculate error
dispersion measures independent of the error rate, with information taken directly from
the confusion matrix [19]. This method relies on entropy-based measure perplexity to
calculate the “effective” mean number of error classes. Measures are ds and dr. ds

can be interpreted as the mean number of wrong responses per correct class; dr is
the mean number of samples incorrectly classified on each possible response. These
measures account for dispersion through the horizontal and vertical dimensions of the
confusion matrix, respectively. The higher the dispersion is, the higher the value of
these measures should be. Error dispersion values show that NNs generated more error
dispersion in comparison to HMMs and DTs. Error dispersion is important because
confusion matrices could be used by machines to decide whether a gesture has been
executed or not, and classifiers with low error distribution should be preferred. Finally,
we propose Confusion Ratio. This measure is defined as the quotient of the total error
over the total correct recognition rate; the lowest the confusion ratio, the lowest the
value of this measure is. Here, again the results are similar for HMMs and NNs, and
better than DTs.

Clarity in knowledge representation has not been correctly valued in the past on ges-
ture recognition. While it has been shown that ANNs and HMMs provide good recog-
nition engines, gestural information is better described by decision trees. In particular,
HMMs represent internal information as numerical data, making it difficult to assign
physical meanings and make judgments without the aid of adequate graphical tools.
With ANNs the situation is even worse. Decision trees represent their information in a
suitable form to be readable for everyone with a little understanding of them and using
only a few parameters. For example, DTs enable us to visually analyze the structure
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Table 5. Dispersion measures for cumulative confusion matrices of HMMs, DTs and NNs

Shannon’s entropy ds dr Confusion Ratio

Hidden Markov models 3.51 1.88 1.88 0.054
Decision trees 3.94 3.36 3.46 0.142

Neural Networks 3.54 3.60 3.62 0.052

of gestures by identifying relevant observations for each gesture class –that it is a first
step for feature selection. We have seen that gestures with similar evolutions are fre-
quently grouped together into the structure of DTs. This help us to identify in advance
which gestures are similar and could be potentially misclassified before making exten-
sive testing. In addition to descriptiveness capabilities of DTs, the low training time of
these models can be important for fast prototyping when designing gestural interfaces.

6 Conclusions and Future Work

In this paper, an empirical comparison of decision trees, neural networks and hidden
Markov models in gesture recognition has been presented. Our analysis extends
previous efforts to issues not considered before such as knowledge description, fea-
ture selection, error distribution and computational time for training. We have found
that there is not a single best alternative to cope with all these questions. Neural nets
and hidden Markov models obtained high recognition rates in comparison to decision
trees. However, knowledge description of decision trees allows us to analyze interesting
information such as the similarity of gestures or relevant observations. Moreover, due
to the required computational time for training, decision trees could be adequate for fast
prototyping in the design of gestural interfaces. We used a gesture database with more
than 7000 samples performed by 15 people.

We believe decision trees can be applied to gestural analysis beyond gesture recog-
nition. As a future work we plan to test different configurations for the current attributes
and different sets of feature vectors to evaluate its impact on recognition performance
and gesture description. In addition, we plan to develop a methodology for using decision
trees as a preprocessing step to automatically analyze gestures, their relevant attributes,
and to identify possible confusions before testing other more complex representations.

Acknowledgments. The authors would like to thank Dr. Rob van Son for his valuable
comments and for proofreading the document, and anonymous reviewers for their
constructive suggestions.

References

1. Corradini, A., Gross, H.M.: Implementation and Comparison of Three Achitectures for
Gesture Recognition. In: IEEE International Conference on Acoustics, Speech, and Signal
Processing, pp. 2361–2364 (2000)

2. Davis, J.W., Bobick, A.F.: The Representation and Recognition of Human Movement Us-
ing Temporal Templates. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, p. 928 (1997)



On the Selection of a Classification Technique 421

3. Waldherr, S.: Gesture Recognition on a Mobile Robot, Diploma’s thesis Carnegie Mellon
University. School of Computer Science (1998)

4. Yang, J., Xu, Y.: Hidden Markov model for Gesture Recognition, Techincal report CMU-RI-
TR-94-10, Carnegie Mellon University (1994)

5. Duda, R.O., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, Chichester
(2001)

6. Dadgostar, F., Sarrafzadeh, A., Fan, C., De Silva, L., Messom, C.: Modeling and Recognition
of Gesture Signals in 2D Space: A comparison of NN and SVM approaches. In: 18th IEEE
International Conference on Tools with Artificial Intelligence, pp. 701–704 (2006)

7. Watson, R.: A Survey of Gesture Recognition Techniques, Technical Report TCD-CS-93-11,
Trinity College (1993)

8. Pavlović, V., Sharma, R., Huang, T.S.: Visual Interpretation of Hand Gestures for Human-
Computer Interaction: A Review. IEEE Trans. on Patt. Anal. and Mach. Intell. 19(7), 677–
695 (1997)

9. Campbell, L.W., Becker, A.D., Azarbayejani, A., Bobick, A.F., Pentland, A.: Invariant fea-
tures for 3-D Gesture Recognition, Techinical report 379, M.I.T. Media Laboratory Percep-
tual Computing Section (1996)

10. Spiegel, D.: A Gesture Recognition System (1997),
http://alumni.media.mit.edu/∼spiegel/papers/gesture.pdf

11. Hai, W., Sutherland, A.: Dynamic gesture recognition using PCA with multi-scale theory and
HMM. In: Proc. SPIE, vol. 4550, pp. 132–139 (2001)

12. Mardia, K.V., Ghali, N.M., Hainsworth, T.J., Howes, M., Sheehy, N.: Techniques for online
gesture recognition on workstations. Image Vision Comput. 11(5), 283–294 (1993)

13. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco
(1993)

14. McNeill, D.: Hand and Mind: What gestures reveal about thought. University of Chicago
Press, Chicago (1992)

15. Rabiner, L.R.: Readings in Speech Recognition, A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition, pp. 257–286. Morgan Kaufmann Publishers,
San Francisco (1990)

16. Avilés, H.H., Sucar, L.E., Mendoza, E.: Visual Recognition of Gestures. In: 18th Interna-
tional Conference on Pattern Recognition, pp. 1100–1103 (2006)

17. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd
edn. Morgan Kaufmann, San Francisco (2005)

18. Kanungo, T.: Hidden Markov Models Software (Last retrieved May 26, 2008),
http://www.kanungo.com/

19. van son, R.J.J.H.: The Relation Between the Error Distribution and the Error Rate in
Indentification Experiments. Proceedings 19, Institute of Phonetic Sciences, University
of Amsterdam, pp. 71–82 (1995) (Last retrieved May 26, 2008), http://fonsg3.
hum.uva.nl/Proceedings/Proceedings 19/ErrorDispersion RvS/
ErrorDispersion.html

20. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical Jour-
nal 27, 379–423, 623–656 (1948)

http://alumni.media.mit.edu/~spiegel/papers/gesture.pdf
http://www.kanungo.com/
http://fonsg3.hum.uva.nl/Proceedings/Proceedings_19/ErrorDispersion_RvS/ErrorDispersion.html
http://fonsg3.hum.uva.nl/Proceedings/Proceedings_19/ErrorDispersion_RvS/ErrorDispersion.html
http://fonsg3.hum.uva.nl/Proceedings/Proceedings_19/ErrorDispersion_RvS/ErrorDispersion.html

	Introduction
	Related Work
	Classification Techniques
	Gesture Database
	Experiments and Results
	Gesture Attributes
	Data Preparation
	Experimental Setup
	Results
	Analysis

	Conclusions and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


