Ejemplo 4
Considere φ=def∀x∀yQ(g(x,y),g(y,y),z), donde Q(3) y g(2). Encuentre M y M′ con ambientes respectivos l y l′ tales que M⊨lφ y M′⊨l′φ.
∀x∀yQ(g(x,y),g(y,y),z) depende de los valores de z. Elegimos A como Z, gM(n,m)=n−m, y (p,q,r) está en QM si y solo si r es el producto de p por q. g(y,y) se interpreta como 0 y nuestra fórmula afirma que 0 es igual al valor de z. Para l(z)=def0 la fórmula se cumple, mientras que para l′(z)=def1 es falsa.