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Abstract. We point out the joint occurrence of Pascal triangle patterns and power-law scaling
in the standard logistic map, or more generally, in unimodal maps. It is known that these
features are present in its two types of bifurcation cascades: period and chaotic-band doubling
of attractors. Approximate Pascal triangles are exhibited by the sets of lengths of supercycle
diameters and by the sets of widths of opening bands. Additionally, power-law scaling manifests
along periodic attractor supercycle positions and chaotic band splitting points. Consequently,
the attractor at the mutual accumulation point of the doubling cascades, the onset of chaos,
displays both Gaussian and power-law distributions. Their combined existence implies both
ordinary and exceptional statistical-mechanical descriptions of dynamical properties.

1. Introduction
The logistic map has played a prominent role in the development of the field of nonlinear
dynamics [1]-[3]. The simplicity of its quadratic expression and the richness and intricacy of
the properties that stem from it have captivated a large number of scholars and students over
decades. It has served as a standard source for the illustration of nonlinear concepts such
as: bifurcations, stable and unstable periodic orbits, periodic windows, ergodic and mixing
behaviors, chaotic orbits and universality in the sense of the Renormalization Group (RG)
method [1]-[3]. It has also become a suitable model system for the exploration of statistical-
mechanical structures [4]. All of these properties are shared by one-dimensional unimodal maps
where the quadratic maximum is replaced by an extremum of general nonlinearity z > 1 [2, 5].
Here we concisely draw attention to the presence of geometrical and scaling laws in the family
of attractors generated by the logistic map and to the consequences that these laws have in the
dynamical properties of their most interesting object of study: the period-doubling transition
to chaos. One-dimensional nonlinear maps, like the logistic, are necessarily dissipative [1] and
they settle after much iteration into attractors that may consist of a finite set of points regularly
visited or an infinite number of points that may be irregularly (or chaotically) visited [1]-[3].
The logistic map possesses an infinite family of attractors that are connected via cascades of
bifurcations at which periods or number of chaotic bands duplicate [1]-[3]. These families of
attractors display power laws associated with attractor positions and Pascal Triangles associated
with distances between these positions.
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We recall that a Pascal Triangle is a triangular arrangement of the binomial coefficients and
that it contains many remarkable numerical relations [6]. Blaise Pascal studied this array in the
17th century, although it had been described centuries earlier by the Chinese mathematician
Yang Hui, and then by other Indian and Persian scholars. It is therefore known as the Yang Hui
triangle in China [7]. This triangle serves as the basis of the De Moivre-Laplace theorem [8] an
earlier limited version of the central limit theorem leading to the Gaussian distribution.

We provide below a description of how these properties arise in the logistic map and discuss
their implications for the mathematical structures in the dynamics of this nonlinear system,
itself a convenient numerical laboratory for the study of statistical-mechanical theories [4].

2. The bifurcation cascades of the logistic map
We briefly recall the basic definitions of the superstable periodic attractors (or supercycles)
and the chaotic band-merging attractors (or Misiurewicz points) [1]-[3]. These have become
convenient families of attractors in formal descriptions of the bifurcation cascades of unimodal
maps, often illustrated by the logistic map fµ(x) = 1− µx2, −1 ≤ x ≤ 1, 0 ≤ µ ≤ 2.

The superstable orbits of periods 2n, n = 1, 2, 3, . . ., are located along the bifurcation forks,
i.e. the control parameter value µ = µ̄n < µ∞ for the superstable 2n-attractor is that for
which the orbit of period 2n contains the point x = 0, where µ∞ = 1.401155189 . . . is the
value of µ at the main period-doubling accumulation point. The positions (or phases) of the

2n-attractor are given by xm = f
(m)
µ̄n (0), m = 0, 1, . . . , 2n − 1. The diameters dn,m are defined

as dn,m ≡ xm − f
(2n−1)
µ̄n (xm) [1]. See Fig. 1. Notice that infinitely many other sequences of

superstable attractors appear at the period-doubling cascades within the windows of periodic
attractors for values of µ > µ∞ [1].

µ

x

Figure 1. Sector of the period-doubling bifurcation tree for the logistic map fµ(x) that shows
the formation of a Pascal Triangle of diameter lengths according to the binomial approximation
explained in the text, where α ' 2.50291 is the absolute value of Feigenbaum’s universal
constant.

When µ is shifted to values larger than µ∞, ∆µ ≡ µ − µ∞ > 0, the attractors are chaotic and
consist of 2n bands, n = 0, 1, 2, . . ., where 2n ∼ ∆µ−κ, κ = ln 2/ ln δ, and δ = 4.669201609102 . . .

SPMCS2014 IOP Publishing
Journal of Physics: Conference Series 604 (2015) 012018 doi:10.1088/1742-6596/604/1/012018

2



is the universal constant that measures both the rate of convergence of the values of µ = µ̄n to
µ∞ at period doubling or at band splitting points or Misiurewicz points [2]. The Misiurewicz
(Mn) points are attractor merging crises, where multiple pieces of an attractor merge together
at the position of an unstable periodic orbit. The Mn points can be determined by evaluation
of the trajectories with initial condition x0 = 0 for different values of µ, as these orbits follow
the edges of the chaotic bands until at µ = µ̂n, the control parameter value for the Mn point,
the unstable orbit of period 2n reaches the merging crises [9]. See Fig. 2. Notice that infinitely
many other sequences of Misiurewicz points appear at the band-splitting cascades within the
windows of periodic attractors for values of µ > µ∞ [1].

α−1 α−2

α−3 α−2 α−3 α−4

µ

x

Figure 2. Sector of the main band-splitting cascade for the logistic map fµ(x) that shows the
formation of a Pascal triangle of band widths (solid lines) at splitting according to the scaling
approximation explained in the text, where α ' 2.50291 is the absolute value of Feigenbaum’s
universal constant.

3. Pascal Triangles and power-law scaling
The Pascal Triangles and the power-law scaling present in the families of attractors along the
bifurcation cascades of the logistic map are best appreciated graphically. These can be visualized
in Figs. 1 to 4 that we describe below.

Fig. 1 shows the main period-doubling cascade for the logistic map fµ(x) in the (x, µ) plane
from period two to its accumulation point (the transition to chaos) and beyond. A few of the
supercycle diameters are shown and their approximate sizes are annotated as inverse powers
of the (absolute value of the) universal constant α = −2.50291 . . . For convenience we denote
|α| as α below and in the figure captions. The diameters naturally assemble into well-defined
size groups and the numbers of them in each group can be precisely arranged into a Pascal
Triangle. In fact, the diameter lengths within each group are not equal, however the differences
in lengths within groups diminishes rapidly as the period 2n increases [10]. A detailed study
of the quantitative differences between the values of the diameters generated by the logistic
map and those obtained from the binomial approximation that form the Pascal triangle in Fig.
1 is given in [10]. There are two groups with only one member, the largest and the shortest
diameters, and the numbers within each group are given by the binomial coefficients.
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Fig. 2 shows a segment of the main band-splitting cascade of the logistic map fµ(x) in the
(x, µ) plane where we indicate the widths of these bands at the control parameter values µ̂n
when they each split into two new bands. As in the case of the diameters the band widths
diminish in size according to the same inverse powers of α as their numbers 2n increase. They
also form groups of nearly equal sizes with numbers given by the binomial coefficients. Again
if it is assumed that for every value of n the widths of comparable lengths have equal lengths
then these widths can be obtained from the widths of shortest and longest lengths via a simple
scale factor consisting of an inverse power of α. Under this approximation we observe a Pascal
Triangle across the band-splitting cascade.

Fig. 3 shows the period-doubling cascade for the logistic map fµ(x) in logarithmic scales in
order that the power-law scaling of positions of trajectories along the supercycle attractors is
plainly observed. These positions are shown as circles. As it can be appreciated in the figure
certain sequences of positions each belonging different cycles fall on straight lines that share a
common slope. One such alignment corresponds to positions of the principal diameters dn,0 that
are formed when x = 0 is the other endpoint of the interval. (The positions at x = 0 do not
appear in the figure as their logarithm is minus infinity). The power-law scaling is of the form
|x| ∼ α−n.

|x
|

− log(µ∞ − µ)

d1,0

d2,0

d3,0

d4,0

Figure 3. Absolute value of attractor positions for the logistic map fµ(x) in logarithmic
scale as a function of the logarithm of the control parameter difference µ∞−µ. The supercycle
attractors are shown by the arrows and the notation d1,0, d2,0, . . . corresponds to the so-called
principal diameters, the distances between x = 0, the position of the maximum of the map,
and the nearest cycle position.

Fig. 4 shows the band-doubling cascade of chaotic attractors in the logistic map fµ(x) in
logarithmic scales so that the power-law scaling of splitting positions Mn is clearly observed.
Some of these positions are shown as circles. As it can be observed in the figure sequences of
Misiurewicz points fall on straight lines that share a common slope. The power-law scaling is
again of the form |x| ∼ α−n.
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|x
|

µ− µ∞

Figure 4. Attractor bands and gaps between them (white horizontal regions) in
logarithmic scales, − log(µ − µ∞) and log(|x|) in the horizontal and vertical axes,
respectively. The band-splitting points Mn (circles) follow a straight line indicative of
power-law scaling. The vertical white strips are periodic attractor windows.

4. Gaussian and multi-scale distributions
As mentioned, the Pascal Triangle is closely associated with a special case of the Central Limit
Theorem, known as the De Moivre-Laplace theorem that dates back to 1870 [8]. This theorem
establishes that the limiting form of the binomial distribution, the sum of the binomial series of
(p + q)n for which the number of successes s falls between p and q, p + q = 1, is the Gaussian
distribution. Therefore the occurrences of approximate Pascal Triangles for the sets of diameters
and bandwidths in the bifurcation cascades implies a Gaussian distribution for these lengths at
their accumulation point, the period-doubling onset of chaos. On the other hand, the power-law
scaling of supercycle and band-splitting positions is reflected onto the period-doubling onset of
chaos as a complete organization of subsequences of positions each following the same power-
law scaling. Iteration time evolution at µ∞ from t = 0 up to t→∞ traces the period-doubling
cascade progression from µ = 0 up to µ∞. There is a quantitative relationship between the
two developments. Specifically, the trajectory inside the attractor at µ∞ with initial condition
x0 = 0, the 2∞-supercycle orbit, takes positions xt, such that the distances between appropriate
pairs of them reproduce the diameters dn,m, defined for the supercycle orbits with µ̄n < µ∞ [4].
See Fig. 5, where the absolute value of positions and logarithmic scales are used to illustrate the
equivalence.

The limit distributions of sums of positions at the period-doubling transition to chaos in
unimodal maps have been studied by making use of the trajectory properties described above
[11], [12]. Firstly, the sum of positions as they are visited by a single trajectory within the
attractor was found to have a multifractal structure imprinted by that of the accumulation
point attractor [11]. It was shown, analytically and numerically, that the sum of values of
positions display discrete scale invariance fixed jointly by the universal constant α, and by the
period doublings contained in the number of summands. The stationary distribution associated
with this sum has a multifractal support given by the period-doubling accumulation point
attractor [11]. Secondly, the sum of subsequent positions generated by an ensemble of uniformly
distributed initial conditions in the entire phase space was recently determined [12]. It was
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found that this sum acquires features of the repellor preimage structure that dominates the
dynamics toward the attractor. The stationary distribution associated with this ensemble has
a hierarchical structure with multi-scale properties [12]. See also Ref. [13].

|x
t|

t

d2,0

d3,0

d4,0

Figure 5. Absolute value of trajectory positions xt, t = 0, 1, . . ., for the logistic map fµ(x)
at µ∞, with initial condition x0 = 0, in logarithmic scale as a function of the logarithm of the
time t, also shown by the numbers close to the points.

5. Scale invariant properties and statistical-mechanical structures
Underlying the power-law scaling of positions are the self-affine properties that permeate the
dynamics of unimodal maps. As we have seen, these properties manifest visibly along the well-
known bifurcation cascades described here. They are also at the center of the Renormalization
Group (RG) functional composition developed time ago [1] to provide a firm theoretical basis
to the universal properties of the accumulation point of the bifurcation cascades. The RG fixed-
point map f∗(x) satisfies the condition f∗(f∗(x)) = αf∗(x/α). Fig. 5 offers us a simple visual
opportunity to observe the effect of the RG functional composition and its fixed-point map
property. First we notice that certain position subsequences appear aligned in the figure. The
most visible is that of |xt|, t = 2n, n = 0, 1, 2, 3, . . ., with a slope equal to lnα/ ln 2, the main
diagonal pattern in the figure. Next to it is the subsequence |xt|, t = 3 × 2n, n = 0, 1, 2, 3, . . .,
with the same slope, and so on. All the positions xt can be distributed into subsequences of the
form |xt|, t = (2l + 1)2n, n = 0, 1, 2, 3, . . ., l = 0, 1, 2, 3, . . ., that form a family of lines in the
figure with the fixed slope − lnα/ ln 2 [4]. And all of the infinite family of aligned subsequences
of positions can be collapsed onto a single line via rescaling with the use of a “waiting” time
tw = 2l+ 1, l = 0, 1, 2, 3, . . ., a property known as aging in the topic of glassy dynamics [4], [14].

We observe that the positions in the logarithmic scales of Fig. 5 appear grouped into horizontal
bands separated by gaps of equal widths. The top band contains one half of the attractor
positions as all the odd iteration times appear there. The second band is made of one quarter
of the attractor positions, those that correspond to iteration times of the form t = 2 + 2n,
n = 0, 1, 2, 3, . . . And similarly, the (k + 1)-th band contains 1/2n of the positions of the
attractor, those for iteration times of the form t = 2k + 2n, n = 0, 1, 2, 3, . . ., k = 0, 1, 2, 3, . . .
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The RG method successively transforms the system under study by elimination of degrees of
freedom followed by rescaling aimed at restoring its original condition. This procedure can be
envisaged in Fig. 5 by eliminating its top band, one half of the total attractor positions, and
restoring the original figure by shifting the remaining positions horizontally by an amount − ln 2
and vertically by an amount lnα, in line with the slope − lnα/ ln 2 of the aligned subsequences.
This graphical procedure is equivalent to functional composition. Repeated application of this
transformation leads asymptotically to the scaling property of the fixed-point map f∗(x).

The scale invariant features of the accumulation point of the bifurcation cascades can be
related to statistical-mechanical properties that involve generalized entropy expressions [4], [10].
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