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1 Introduction

Let P be an orthogonal polygon (polyhedron) in R2

(R3). We say that two points p, q ∈ P are orthogo-
nally visible if the smallest axis-aligned box (an axis-
aligned rectangle in R2 or an axis-aligned cuboid in
R3) containing them is contained in P . We consider
a chromatic variation of the Art Gallery Problem on
orthogonal polygons and orthogonal polyhedra under
orthogonal visibility. A point p is illuminated by a
point q if it is orthogonally visible from q. A set of
points G illuminates P if every point in P is orthog-
onally visible from at least one element of G. In this
paper we will assume that the elements of G have
been assigned a color. From now on we will refer to
orthogonal visibility simply as visibility.

A set G of colored points of a polygon or poly-
hedron P strongly illuminates P if every element p
of P is visible from at least one element of G, and
all the elements of G that see p have different color.
We want to find the smallest number χ(n) of colors
such that any n-vertex polygon or polyhedron can be
strongly illuminated with a set of points using χ(n)
colors. In this paper we will be using α-floodlights, or
their generalizations in R3 to illuminate our polygons
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or polyhedron.

In the plane an α-floodlight f is a light source that
emits light within a cone of angular size α bounded by
two rays emanating from a point p, called the apex of
f . In this paper, we will be dealing with α-floodlights
of sizes π and π/2. In most of the cases we show how
to illuminate the interior, the exterior, or the interior
and the exterior of a polygon or polyhedron with α-
floodlights or their generalization in R3.

2 Related work

In 1973, V. Klee posed the following problem: How
many lights are always sufficient to illuminate the in-
terior of an art gallery represented by a simple poly-
gon on the plane with n vertices? V. Chvátal proved
in [3] that

⌊
n
3

⌋
lights are always sufficient and some-

times necessary. Since then, illumination problems
have been studied by many authors. The book by J.
O’Rourke [7], and the surveys by T. Shermer [8] and
J. Urrutia [9] are good sources of information on art
gallery problems.

Floodlight illumination problems were initially
studied in 1997, see [2, 9]. A chromatic version
of the problem was studied in [4]. The problem
was motivated by applications in distributed robotics,
where colors indicate the wireless frequencies assigned
to a set of covering landmarks, so that a mobile
robot can always communicate with at least one land-
mark without interference. A chromatic version us-
ing floodlights was studied in [6]. A chromatic ver-
sion with conflict free illumination was studied in [1].
A chromatic version with conflict free illumination
using guards with orthogonal visibility was studied
in [5]. We present some of the results of the chro-
matic variant of the Art Gallery Problem in Table 1.

33



XVII Spanish Meeting on Computational Geometry

Table 1: Previous Results
Bounds on the chromatic number

Simple Polygons
Polygon lower upper C/V/α Ref
Spiral ≤ 2 st/l/2π [4]

Monotone Ω(
√
n) st/l/2π [4]

General Ω(n) O(n) st/l/2π [4]
Monotone O(log n) cf/l/2π [1]
General O(log2 n) cf/l/2π [1]
General 1 1 st/l/≤ π [6]

Orthogonal Polygons
Stair ≤ 3 st/l/2π [4]

Monotone Ω(
√
n) st/l/2π [4]

General Ω( log2 n
log3 n

) cf/l/2π [5]
General Ω(log n) O(log n) st/l/2π [1][5]
General Ω(log2 n) O(log2 n) cf/r/2π [5]

C:Color type (cf:Conflict free st: Strong).
V:Visibility model (l:standar r:orthogonal).

α:Size of visibility.

3 Preliminaries

We study first a chromatic variation of the Art Gallery
Problem on simple orthogonal polygons. Observe that
the internal angle at any vertex of an orthogonal poly-
gon is of size π/2 or 3π/2. A vertex with internal angle
size π/2 is called a convex vertex and a vertex with
internal angle size 3π/2 is called a reflex vertex.

A polyhedron in R3 is a compact set bounded by a
piecewise linear 2-manifold. A face of a polyhedron
is a maximal planar subset of its boundary whose in-
terior is connected and non-empty. A polyhedron is
orthogonal if all of its faces are parallel to the xy-, xz-
or yz-planes. The faces of an orthogonal polyhedron
are orthogonal polygons with or without orthogonal
holes. A vertex of a polyhedron is a vertex of any of its
faces. An edge is a minimal positive-length straight
line segment shared by two faces and joining two ver-
tices of the polyhedron. A polyhedron P is a lifting
polyhedron if there exists an xy-plane Z such that for
all planes parallel to Z their intersection with P is
either empty, or it is a vertical translation of P ∩ Z.

For any polygon (polyhedron) P , |P | denotes the
number of vertices of P , ∂P , int(P ) = P − ∂P , and
ext(P ) = R2 − P (ext(P ) = R3 − P ) denote, re-
spectively, the boundary, the interior and the exte-
rior of P . χ(P, α), χ(ext(P ), α), and χ(P ∪ ext(P ), α)
denote the smallest integer such that there is a set
of α-guards, colored with χ(P, α), χ(ext(P ), α), and
χ(P ∪ ext(P ), α) colors that strongly illuminates P ,
ext(P ), and P ∪ ext(P ). For any point p the visibil-
ity polygon (visibility polyhedron) is the set of points
visible from p.

Let P1 and P2 be two subpolygons (subpolyhedra)
of P . We call P1 and P2 independent if no point
in P can simultaneously see points from int(P1) and
int(P2).

For a polygon P in the plane an edge e of P is a
right edge if there is an ε > 0 such that any point
at distance less than or equal to ε from any interior
point of e and to the left of e belongs to the interior
of P . Left, top and bottom edges are defined similarly.
The windows of a subpolygon P ′ in P are those parts
of ∂P ′ that do not belong to ∂P . A window of P ′

is a bottom window in P if the window belongs to
a bottom edge of P ′. Similarly we define an upper
window, a left window and a right window.

For a given floodlight f , the beginning of f is the
oriented half-line starting at the apex of f , that leaves
the area illuminated by f to its right, and the area not
illuminated by f to its left. The end of f is defined
in a similar way. Given a floodlight f , its orientation
is the value of the (non-negative) angle between the
positive x-axis to the beginning of f .

We proceed now to extend the concept of floodlights
to R3. A wedge in R3 is the intersection, or the union
of two halfspaces whose supporting planes intersect.
The line of intersection of the supporting planes is
called the axis of the wedge. A wedge is called small,
if it is the intersection of two halfspaces. It is called
large if it is the union of two halfspaces. Note that if
a wedge W is small, then the intersection of W with
a plane orthogonal to the axis of W, determines an
angular region A of size α less than or equal to π,
if W is a big wedge, then α is greater than π. The
wedge W will be called an α-wedge. An orthogonal
wedge in R3 is the intersection or the union of two
halfspaces whose supporting planes are orthogonal. If
an orthogonal wedge is small, it is a π

2 -wedge, if it is
large it is a 3π

2 -wedge. An α-segment guard f of P
placed on a segment s in P , guards all of the points of
P visible from s and contained in an α-wedge whose
axis contains s. We assume that an α-segment guard
f can be rotated about its axis until it reaches a de-
sired final orientation. In the rest of this paper we will
assume that our α-segment guards are always placed
in such a way that their supporting planes are par-
allel to the xy-, xz- or yz-planes of R3. We will use
α-segment guards f such that they illuminate only
points p within an α wedge, with the additional re-
striction that the shortest line segment joining p to f
is a line segment orthogonal to f .

4 Orthogonally illuminating orthogonal polygons
with floodlights of size π/2 and π

Theorem 1 Let P be an orthogonal polygon with
|P | = n. Then χ(P, π2 ) = 1.

Proof. To prove our result, we will show how to il-
luminate P with a set of π2 -floodlights in such a way
that no point in P is illuminated by two π

2 -floodlights.
Place π

2 -floodlights on P using the following algo-
rithm:
1. Place a π

2 -floodlight f on the right vertex of a top
edge of P with 3π/2 orientation, and let P ′ be the
area illuminated by this floodlight. Observe that
since we are considering orthogonal visibility, P ′
is an orthogonal polygon.

2. Suppose P ′ 6= P , otherwise we are done. Then
recursively place a π

2 -floodlight on the right ver-

34



XVII EGC, Alicante, June 26-28, 2017

tex of every bottom window of P ′ with 3π/2 ori-
entation, increasing the illuminated area P ′.

3. Continue this process recursively until P ′ has no
more bottom windows. If P ′ = P we are done.

4. Suppose that P ′ 6= P . Recursively proceed as fol-
lows: Each orthogonal subpolygon P ′′ of P − P ′
has one or two edges containing windows of P ′.
In the first case, we proceed as follows: Suppose
that P ′′ has a left edge e containing a right win-
dow of P ′. Rotate P ′′ until e becomes a top edge,
and repeat the process above starting at the right
vertex of e. Proceed in a similar way with the top
and the left windows of P ′. In the second case,
these two edges are incident to a vertex v of P ′′.
Rotate P ′′ until v becomes part of a top edge,
and restart the process at v from step one.

Observe that every floodlight placed in steps 1 and
3 is placed with 3π/2 orientation on a bottom window,
illuminating an area that is below P ′, not illuminated
by f . Therefore no point in P ′ is illuminated by two
floodlights. By the same reason, it is easy to see that
no point in P is illuminated by two floodlights placed
during the execution of Steps 2 and 3.

Using the same arguments we can see that in Step
4, when we illuminate the connected components of
P−P ′ no point in P is illuminated by two floodlights.
Clearly at the end of our procedure the whole of P is
illuminated. �

Figure 1: Illumination of the interior and exterior of
a polygon with π

2 -floodlights.

Theorem 2 Let P be an orthogonal polygon with
|P | = n. Then χ(ext(P ), π2 ) = 1.

Proof. Let B be the smallest bounding box of P . Let
P = {P1, . . . ,Pk} be the set of polygons that are the
connected components of B − P . To illuminate the
exterior of P , we need to illuminate the polygons in
P as well as the exterior of B. Consider first the poly-
gons Pi ∈ P such that one of their top edges belongs
to the boundary of B, e.g. P1 in Figure 1. Illuminate
these polygons using the algorithm in Theorem 1, and
starting by placing a floodlight on its right endpoint.

In a similar way we can illuminate the orthogonal
polygons in P containing a left, bottom, or right edge

in B. Observe that while illuminating the polygons in
P, some of the light used to illuminate them will "spill
out" and illuminate all of the exterior of B except for
four "quadrants" with apices at B. These quadrants
can be illuminated with a π

2 -floodlight placed at their
apices, see Figure 1. Our result follows, as no point is
illuminated by two π

2 -floodlights.
�

Theorems 1 and 2 imply the following theorem:

Theorem 3 Let P be an orthogonal polygon with
|P | = n. Then χ(P ∪ ext(P ), π2 ) = 1.

Theorem 4 Let P be an orthogonal polygon with
|P | = n and h holes. Then 2 ≤ χ(P, π2 ) ≤ h+ 1.

Proof. Consider the set of lines L = {l1, l2, . . . , lk}
parallel to the x-axis that contain the lowest bottom
edges of the holes of P , labelled in such a way that
if i < j the y-coordinate yi of li is less than the y-
coordinate yj of lj . Let l0 be a lowest bottom edge
of P and lk+1 a topmost edge of P . Then, for each
0 ≤ i < k, the set of points of P whose y coordinate
belongs to the interval [yi, yi+1] forms a set Pi of sub-
polygons of P . For each i = 0, . . . , k use Theorem 1
to illuminate all the subpolygons of Pi with color i,
this can be done since all the elements in each Pi are
pairwise independent. Since k ≤ h, we use at most
h+1 colors to illuminate P . For the lower bound con-
sider Figure 2. Observe that when we illuminate the
points a, b, and c either the region A or the region B,
say A, will have two zones colored with color one and
between them a third zone C not illuminated. In oder
to illuminate C a second color must be used, since the
visibility polygon of any floodlight that illuminates C
overlaps at least one of the illuminated zones of A. �

Theorems 4 and 2 imply the following theorem:

Theorem 5 Let P be an orthogonal polygon with
|P | = n and h holes. Then 2 ≤ χ(P ∪ ext(P ), π2 ) ≤
h+ 1.

Theorem 6 Let P be an orthogonal polygon with
|P | = n. Then χ(P, π) = 2.

Proof. We place π-floodlights into P using the The-
orem 1 algorithm with the following changes: In steps
1 to 3 we use color one and 0 orientation on the π-
floodlights placed in the initial edge and the lower
windows. In step 4 we use color two on the π-
floodlights that we place in the polygons P ′′ of the
recursive step, alternating between color one and color
two each time we call the recursion. An intersec-
tion between visibility polygons is generated when we
place a π-floodlight in a P ′′ polygon that has two
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(a) (b)
Figure 2: (a) An orthogonal polygon P with holes
(in gray) s.t. 2 ≤ χ(P, k π2 ), k = 1, 2. This family
grows by adding holes to the polygon. (b) If points
a, b, and c are illuminated with color one, then ei-
ther the region A or the region B, has at least two
illuminated zones, and between them, a not illumi-
nated zone, which forces the use of a second color to
illuminate the polygon.

edges that are P ′ windows, which is not a problem be-
cause they have different colors. For lack of space we
omit the proof for the lower bound of our result. �

Theorem 7 Let P be an orthogonal polygon with
|P | = n and h holes. Then 2 ≤ χ(P, π) ≤ 2(h+ 1).

Proof. The proof is the same as that of Theorem 4
by substituting Theorem 1 for Theorem 6. For the
lower bound we only use π-floodlights instead of π

2 -
floodlights. For the upper bound, the substitution of
1 for Theorem 6 works because the remaining poly-
gons have no holes and can be illuminated using Theo-
rem 6, which is used to illuminate orthogonal polygons
without holes using π-floodlights. By Theorem 6 we
need two colors, so the upper bound is 2(h+ 1). �

5 Orthogonal illumination of orthogonal polyhe-
dra with α-segments of size π/2 and π

Observe first that any orthogonal polyhedron P is the
union of lifting polyhedra with pairwise disjoint inte-
riors.

Let Q = {Q1, Q2, . . . , Qk} be the set of planes con-
taining the faces of P parallel to the xy-plane, s.t.
i < j iff the z coordinate zi of Qi is less than the z
coordinate zj of Qj . Then, for each 1 ≤ i ≤ k−1, the
set of points of P whose z coordinate belongs to the
interval [zi, zi+1] form a lifting orthogonal polyhedron
Pi. Evidently P = P1 ∪ . . . ∪ Pk−1.

Let Q′ = {Q′1, Q′2, . . . , Q′k−1} be a set of planes
parallel to the xy-plane, such that Q′i intersects Pi
midway between Qi and Qi+1. Consider the plane
Q′ ∈ Q′ such that the orthogonal polygonQ′∩P maxi-
mizes the number hxy of holes it has. Define in similar
way hxz and hyz, and let h = min{hxy, hxz, hyz}.

Theorem 8 If h = 0 then χ(P, π2 ) = 1, and
χ(P, π) ≤ 2. If h > 0 then χ(P, π2 ) ≤ h + 1 and
χ(P, π) ≤ 2(h+ 1).

Proof. We will sketch the proof for χ(P, π2 ) = 1, and
h = 0. The others are done in a similar way. Ob-

serve that each Pi as defined above is a lifting or-
thogonal polyhedron. We use π

2 -segments to illumi-
nate it as follows: Let P

′
i be the orthogonal polygon

obtained by intersecting Q′i with Pi. Observe that
any placement of π2 -floodlights that illuminates P

′
i can

be transformed into a set of π
2 -segments that illumi-

nate Pi, each of length zi+1 − zi, and perpendicular
to the xy-plane. By Theorem 1 one such set with
χ(P, π2 ) = 1 exists. This induces a set of π2 -segments
that illuminates Pi for which χ(P, π2 ) = 1. Our result
follows. �

We are grateful to the anonymous referees for their
helpful suggestions.
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